SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
This is a SetFit model trained on the JasperLS/prompt-injections dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L3-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-MiniLM-L3-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
- Training Dataset: JasperLS/prompt-injections
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Myadav/setfit-prompt-injection-MiniLM-L3-v2")
# Run inference
preds = model("Pflegeversicherung Reformen Deutschland")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 19.5513 | 783 |
Label | Training Sample Count |
---|---|
0 | 343 |
1 | 203 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.3725 | - |
0.0366 | 50 | 0.3899 | - |
0.0733 | 100 | 0.2728 | - |
0.1099 | 150 | 0.2562 | - |
0.1465 | 200 | 0.1637 | - |
0.1832 | 250 | 0.0379 | - |
0.2198 | 300 | 0.0744 | - |
0.2564 | 350 | 0.0351 | - |
0.2930 | 400 | 0.0344 | - |
0.3297 | 450 | 0.0216 | - |
0.3663 | 500 | 0.0189 | - |
0.4029 | 550 | 0.0225 | - |
0.4396 | 600 | 0.0142 | - |
0.4762 | 650 | 0.0195 | - |
0.5128 | 700 | 0.0209 | - |
0.5495 | 750 | 0.0252 | - |
0.5861 | 800 | 0.0211 | - |
0.6227 | 850 | 0.0082 | - |
0.6593 | 900 | 0.0036 | - |
0.6960 | 950 | 0.0094 | - |
0.7326 | 1000 | 0.0098 | - |
0.7692 | 1050 | 0.0062 | - |
0.8059 | 1100 | 0.0065 | - |
0.8425 | 1150 | 0.0072 | - |
0.8791 | 1200 | 0.0047 | - |
0.9158 | 1250 | 0.0048 | - |
0.9524 | 1300 | 0.008 | - |
0.9890 | 1350 | 0.0087 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.