YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Full notebook :

https://github.com/MustafaAlahmid/hugging_face_models/blob/main/Vit-classifier_food_dataset.ipynb


license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:1000] args: default metrics: - name: Accuracy type: accuracy value: 0.985

my_awesome_food_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2335
  • Accuracy: 0.985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0523 1.0 50 1.9226 0.935
1.3718 2.0 100 1.3422 0.995
1.2298 3.0 150 1.2335 0.985

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.