SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-3-v23")
# Run inference
sentences = [
"vital interests of the data subject; Complying with an obligation prescribed in PDPL, not being a contractual obligation, or complying with an order from a competent court, the Public Prosecution, the investigation Judge, or the Military Prosecution; or Preparing or pursuing a legal claim or defense. vs Articles: 44 50, Recitals: 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures) Standard data protection clauses adopted by the EU Commission, level of protection. If there is no adequate level of protection, then data controllers in Turkey and abroad shall commit, in writing, to provide an adequate level of protection abroad, as well as agree on the fact that the transfer is permitted by the Board of KVKK. vs Articles 44 50 Recitals 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject' rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures); standard data protection clauses adopted by the EU Commission or by a supervisory authority; an approved code",
'What obligations in PDPL must data controllers or processors meet to protect personal data transferred to a third country or international organization?',
'In what situations can a controller process personal data to protect vital interests?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4021 |
cosine_accuracy@3 | 0.5773 |
cosine_accuracy@5 | 0.6804 |
cosine_accuracy@10 | 0.7938 |
cosine_precision@1 | 0.4021 |
cosine_precision@3 | 0.1924 |
cosine_precision@5 | 0.1361 |
cosine_precision@10 | 0.0794 |
cosine_recall@1 | 0.4021 |
cosine_recall@3 | 0.5773 |
cosine_recall@5 | 0.6804 |
cosine_recall@10 | 0.7938 |
cosine_ndcg@10 | 0.5832 |
cosine_ndcg@80 | 0.6223 |
cosine_mrr@10 | 0.5175 |
cosine_map@100 | 0.5253 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4124 |
cosine_accuracy@3 | 0.567 |
cosine_accuracy@5 | 0.6598 |
cosine_accuracy@10 | 0.7938 |
cosine_precision@1 | 0.4124 |
cosine_precision@3 | 0.189 |
cosine_precision@5 | 0.132 |
cosine_precision@10 | 0.0794 |
cosine_recall@1 | 0.4124 |
cosine_recall@3 | 0.567 |
cosine_recall@5 | 0.6598 |
cosine_recall@10 | 0.7938 |
cosine_ndcg@10 | 0.586 |
cosine_ndcg@80 | 0.6253 |
cosine_mrr@10 | 0.5219 |
cosine_map@100 | 0.5297 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4124 |
cosine_accuracy@3 | 0.5979 |
cosine_accuracy@5 | 0.6495 |
cosine_accuracy@10 | 0.7629 |
cosine_precision@1 | 0.4124 |
cosine_precision@3 | 0.1993 |
cosine_precision@5 | 0.1299 |
cosine_precision@10 | 0.0763 |
cosine_recall@1 | 0.4124 |
cosine_recall@3 | 0.5979 |
cosine_recall@5 | 0.6495 |
cosine_recall@10 | 0.7629 |
cosine_ndcg@10 | 0.5783 |
cosine_ndcg@80 | 0.624 |
cosine_mrr@10 | 0.5207 |
cosine_map@100 | 0.5307 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,496 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 67 tokens
- mean: 216.99 tokens
- max: 512 tokens
- min: 10 tokens
- mean: 21.6 tokens
- max: 102 tokens
- Samples:
positive anchor Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud
Data Mapping data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into
What is the requirement for notifying the data subject of any extension under GDPR and PDPL?
Automation PrivacyCenter.Cloud
Data Mapping - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|
0.2128 | 10 | 3.8486 | - | - | - |
0.4255 | 20 | 2.3622 | - | - | - |
0.6383 | 30 | 2.3216 | - | - | - |
0.8511 | 40 | 1.3247 | - | - | - |
1.0 | 47 | - | 0.5307 | 0.5297 | 0.5253 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MugheesAwan11/bge-base-securiti-dataset-3-v23
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.402
- Cosine Accuracy@3 on dim 768self-reported0.577
- Cosine Accuracy@5 on dim 768self-reported0.680
- Cosine Accuracy@10 on dim 768self-reported0.794
- Cosine Precision@1 on dim 768self-reported0.402
- Cosine Precision@3 on dim 768self-reported0.192
- Cosine Precision@5 on dim 768self-reported0.136
- Cosine Precision@10 on dim 768self-reported0.079
- Cosine Recall@1 on dim 768self-reported0.402
- Cosine Recall@3 on dim 768self-reported0.577