Muennighoff's picture
update model card README.md
fe9a780
|
raw
history blame
1.8 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-xsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 28.2881

t5-small-finetuned-xsum

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4784
  • Rouge1: 28.2881
  • Rouge2: 7.6834
  • Rougel: 22.2163
  • Rougelsum: 22.219
  • Gen Len: 18.8292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.7184 1.0 12753 2.4784 28.2881 7.6834 22.2163 22.219 18.8292

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1