liyoo's picture
Update README.md
0ad02da
|
raw
history blame
66.1 kB
metadata
tags:
  - mteb
model-index:
  - name: bge_m3e_stella
    results:
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 58.40342702033939
          - type: cos_sim_spearman
            value: 61.82757738668223
          - type: euclidean_pearson
            value: 65.98511348169104
          - type: euclidean_spearman
            value: 65.83335541333497
          - type: manhattan_pearson
            value: 66.93537324688916
          - type: manhattan_spearman
            value: 66.87340525241812

pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 69.22388059701493 - type: ap value: 32.04724673950256 - type: f1 value: 63.25719825770428 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.26109999999998 - type: ap value: 66.16336378255403 - type: f1 value: 70.89719145825303 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 39.19199999999999 - type: f1 value: 38.580766731113826 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 27.311999999999998 - type: map_at_10 value: 42.620000000000005 - type: map_at_100 value: 43.707 - type: map_at_1000 value: 43.714999999999996 - type: map_at_3 value: 37.624 - type: map_at_5 value: 40.498 - type: mrr_at_1 value: 27.667 - type: mrr_at_10 value: 42.737 - type: mrr_at_100 value: 43.823 - type: mrr_at_1000 value: 43.830999999999996 - type: mrr_at_3 value: 37.743 - type: mrr_at_5 value: 40.616 - type: ndcg_at_1 value: 27.311999999999998 - type: ndcg_at_10 value: 51.37500000000001 - type: ndcg_at_100 value: 55.778000000000006 - type: ndcg_at_1000 value: 55.96600000000001 - type: ndcg_at_3 value: 41.087 - type: ndcg_at_5 value: 46.269 - type: precision_at_1 value: 27.311999999999998 - type: precision_at_10 value: 7.945 - type: precision_at_100 value: 0.9820000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.046 - type: precision_at_5 value: 12.745000000000001 - type: recall_at_1 value: 27.311999999999998 - type: recall_at_10 value: 79.445 - type: recall_at_100 value: 98.151 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 51.13799999999999 - type: recall_at_5 value: 63.727000000000004 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 45.59037428592033 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 38.86371701986363 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 61.625568691427766 - type: mrr value: 75.83256386580486 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 89.96074355094802 - type: cos_sim_spearman value: 86.2501580394454 - type: euclidean_pearson value: 82.18427440380462 - type: euclidean_spearman value: 80.14760935017947 - type: manhattan_pearson value: 82.24621578156392 - type: manhattan_spearman value: 80.00363016590163 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 84.49350649350649 - type: f1 value: 84.4249343233736 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 36.551459722989385 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 33.69901851846774 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.499 - type: map_at_10 value: 41.208 - type: map_at_100 value: 42.638 - type: map_at_1000 value: 42.754 - type: map_at_3 value: 37.506 - type: map_at_5 value: 39.422000000000004 - type: mrr_at_1 value: 37.339 - type: mrr_at_10 value: 47.051 - type: mrr_at_100 value: 47.745 - type: mrr_at_1000 value: 47.786 - type: mrr_at_3 value: 44.086999999999996 - type: mrr_at_5 value: 45.711 - type: ndcg_at_1 value: 37.339 - type: ndcg_at_10 value: 47.666 - type: ndcg_at_100 value: 52.994 - type: ndcg_at_1000 value: 54.928999999999995 - type: ndcg_at_3 value: 41.982 - type: ndcg_at_5 value: 44.42 - type: precision_at_1 value: 37.339 - type: precision_at_10 value: 9.127 - type: precision_at_100 value: 1.4749999999999999 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.449000000000002 - type: recall_at_1 value: 30.499 - type: recall_at_10 value: 60.328 - type: recall_at_100 value: 82.57900000000001 - type: recall_at_1000 value: 95.074 - type: recall_at_3 value: 44.17 - type: recall_at_5 value: 50.94 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.613 - type: map_at_10 value: 40.781 - type: map_at_100 value: 42.018 - type: map_at_1000 value: 42.132999999999996 - type: map_at_3 value: 37.816 - type: map_at_5 value: 39.389 - type: mrr_at_1 value: 38.408 - type: mrr_at_10 value: 46.631 - type: mrr_at_100 value: 47.332 - type: mrr_at_1000 value: 47.368 - type: mrr_at_3 value: 44.384 - type: mrr_at_5 value: 45.661 - type: ndcg_at_1 value: 38.408 - type: ndcg_at_10 value: 46.379999999999995 - type: ndcg_at_100 value: 50.81 - type: ndcg_at_1000 value: 52.663000000000004 - type: ndcg_at_3 value: 42.18 - type: ndcg_at_5 value: 43.974000000000004 - type: precision_at_1 value: 38.408 - type: precision_at_10 value: 8.656 - type: precision_at_100 value: 1.3860000000000001 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.276 - type: precision_at_5 value: 14.241999999999999 - type: recall_at_1 value: 30.613 - type: recall_at_10 value: 56.44 - type: recall_at_100 value: 75.044 - type: recall_at_1000 value: 86.426 - type: recall_at_3 value: 43.766 - type: recall_at_5 value: 48.998000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 37.370999999999995 - type: map_at_10 value: 49.718 - type: map_at_100 value: 50.737 - type: map_at_1000 value: 50.79 - type: map_at_3 value: 46.231 - type: map_at_5 value: 48.329 - type: mrr_at_1 value: 42.884 - type: mrr_at_10 value: 53.176 - type: mrr_at_100 value: 53.81700000000001 - type: mrr_at_1000 value: 53.845 - type: mrr_at_3 value: 50.199000000000005 - type: mrr_at_5 value: 52.129999999999995 - type: ndcg_at_1 value: 42.884 - type: ndcg_at_10 value: 55.826 - type: ndcg_at_100 value: 59.93000000000001 - type: ndcg_at_1000 value: 61.013 - type: ndcg_at_3 value: 49.764 - type: ndcg_at_5 value: 53.025999999999996 - type: precision_at_1 value: 42.884 - type: precision_at_10 value: 9.046999999999999 - type: precision_at_100 value: 1.212 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.131999999999998 - type: precision_at_5 value: 15.524 - type: recall_at_1 value: 37.370999999999995 - type: recall_at_10 value: 70.482 - type: recall_at_100 value: 88.425 - type: recall_at_1000 value: 96.03399999999999 - type: recall_at_3 value: 54.43 - type: recall_at_5 value: 62.327999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.875999999999998 - type: map_at_10 value: 31.715 - type: map_at_100 value: 32.847 - type: map_at_1000 value: 32.922000000000004 - type: map_at_3 value: 29.049999999999997 - type: map_at_5 value: 30.396 - type: mrr_at_1 value: 24.52 - type: mrr_at_10 value: 33.497 - type: mrr_at_100 value: 34.455000000000005 - type: mrr_at_1000 value: 34.510000000000005 - type: mrr_at_3 value: 30.791 - type: mrr_at_5 value: 32.175 - type: ndcg_at_1 value: 24.52 - type: ndcg_at_10 value: 36.95 - type: ndcg_at_100 value: 42.238 - type: ndcg_at_1000 value: 44.147999999999996 - type: ndcg_at_3 value: 31.435000000000002 - type: ndcg_at_5 value: 33.839000000000006 - type: precision_at_1 value: 24.52 - type: precision_at_10 value: 5.9319999999999995 - type: precision_at_100 value: 0.901 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.469 - type: recall_at_1 value: 22.875999999999998 - type: recall_at_10 value: 51.38 - type: recall_at_100 value: 75.31099999999999 - type: recall_at_1000 value: 89.718 - type: recall_at_3 value: 36.26 - type: recall_at_5 value: 42.248999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.984 - type: map_at_10 value: 23.457 - type: map_at_100 value: 24.723 - type: map_at_1000 value: 24.846 - type: map_at_3 value: 20.873 - type: map_at_5 value: 22.357 - type: mrr_at_1 value: 18.159 - type: mrr_at_10 value: 27.431 - type: mrr_at_100 value: 28.449 - type: mrr_at_1000 value: 28.52 - type: mrr_at_3 value: 24.979000000000003 - type: mrr_at_5 value: 26.447 - type: ndcg_at_1 value: 18.159 - type: ndcg_at_10 value: 28.627999999999997 - type: ndcg_at_100 value: 34.741 - type: ndcg_at_1000 value: 37.516 - type: ndcg_at_3 value: 23.902 - type: ndcg_at_5 value: 26.294 - type: precision_at_1 value: 18.159 - type: precision_at_10 value: 5.485 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 11.774 - type: precision_at_5 value: 8.731 - type: recall_at_1 value: 14.984 - type: recall_at_10 value: 40.198 - type: recall_at_100 value: 67.11500000000001 - type: recall_at_1000 value: 86.497 - type: recall_at_3 value: 27.639000000000003 - type: recall_at_5 value: 33.595000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 29.067 - type: map_at_10 value: 39.457 - type: map_at_100 value: 40.83 - type: map_at_1000 value: 40.94 - type: map_at_3 value: 35.995 - type: map_at_5 value: 38.159 - type: mrr_at_1 value: 34.937000000000005 - type: mrr_at_10 value: 44.755 - type: mrr_at_100 value: 45.549 - type: mrr_at_1000 value: 45.589 - type: mrr_at_3 value: 41.947 - type: mrr_at_5 value: 43.733 - type: ndcg_at_1 value: 34.937000000000005 - type: ndcg_at_10 value: 45.573 - type: ndcg_at_100 value: 51.266999999999996 - type: ndcg_at_1000 value: 53.184 - type: ndcg_at_3 value: 39.961999999999996 - type: ndcg_at_5 value: 43.02 - type: precision_at_1 value: 34.937000000000005 - type: precision_at_10 value: 8.296000000000001 - type: precision_at_100 value: 1.32 - type: precision_at_1000 value: 0.167 - type: precision_at_3 value: 18.8 - type: precision_at_5 value: 13.763 - type: recall_at_1 value: 29.067 - type: recall_at_10 value: 58.298 - type: recall_at_100 value: 82.25099999999999 - type: recall_at_1000 value: 94.476 - type: recall_at_3 value: 42.984 - type: recall_at_5 value: 50.658 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 25.985999999999997 - type: map_at_10 value: 35.746 - type: map_at_100 value: 37.067 - type: map_at_1000 value: 37.191 - type: map_at_3 value: 32.599000000000004 - type: map_at_5 value: 34.239000000000004 - type: mrr_at_1 value: 31.735000000000003 - type: mrr_at_10 value: 40.515 - type: mrr_at_100 value: 41.459 - type: mrr_at_1000 value: 41.516 - type: mrr_at_3 value: 37.938 - type: mrr_at_5 value: 39.25 - type: ndcg_at_1 value: 31.735000000000003 - type: ndcg_at_10 value: 41.484 - type: ndcg_at_100 value: 47.047 - type: ndcg_at_1000 value: 49.427 - type: ndcg_at_3 value: 36.254999999999995 - type: ndcg_at_5 value: 38.375 - type: precision_at_1 value: 31.735000000000003 - type: precision_at_10 value: 7.66 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 17.427999999999997 - type: precision_at_5 value: 12.328999999999999 - type: recall_at_1 value: 25.985999999999997 - type: recall_at_10 value: 53.761 - type: recall_at_100 value: 77.149 - type: recall_at_1000 value: 93.342 - type: recall_at_3 value: 39.068000000000005 - type: recall_at_5 value: 44.693 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.949749999999998 - type: map_at_10 value: 34.04991666666667 - type: map_at_100 value: 35.26825 - type: map_at_1000 value: 35.38316666666667 - type: map_at_3 value: 31.181333333333335 - type: map_at_5 value: 32.77391666666667 - type: mrr_at_1 value: 29.402833333333334 - type: mrr_at_10 value: 38.01633333333333 - type: mrr_at_100 value: 38.88033333333334 - type: mrr_at_1000 value: 38.938500000000005 - type: mrr_at_3 value: 35.5175 - type: mrr_at_5 value: 36.93808333333333 - type: ndcg_at_1 value: 29.402833333333334 - type: ndcg_at_10 value: 39.403166666666664 - type: ndcg_at_100 value: 44.66408333333333 - type: ndcg_at_1000 value: 46.96283333333333 - type: ndcg_at_3 value: 34.46633333333334 - type: ndcg_at_5 value: 36.78441666666667 - type: precision_at_1 value: 29.402833333333334 - type: precision_at_10 value: 6.965833333333333 - type: precision_at_100 value: 1.1330833333333334 - type: precision_at_1000 value: 0.15158333333333335 - type: precision_at_3 value: 15.886666666666665 - type: precision_at_5 value: 11.360416666666667 - type: recall_at_1 value: 24.949749999999998 - type: recall_at_10 value: 51.29325 - type: recall_at_100 value: 74.3695 - type: recall_at_1000 value: 90.31299999999999 - type: recall_at_3 value: 37.580083333333334 - type: recall_at_5 value: 43.529666666666664 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.081999999999997 - type: map_at_10 value: 29.215999999999998 - type: map_at_100 value: 30.163 - type: map_at_1000 value: 30.269000000000002 - type: map_at_3 value: 26.942 - type: map_at_5 value: 28.236 - type: mrr_at_1 value: 24.847 - type: mrr_at_10 value: 31.918999999999997 - type: mrr_at_100 value: 32.817 - type: mrr_at_1000 value: 32.897 - type: mrr_at_3 value: 29.831000000000003 - type: mrr_at_5 value: 31.019999999999996 - type: ndcg_at_1 value: 24.847 - type: ndcg_at_10 value: 33.4 - type: ndcg_at_100 value: 38.354 - type: ndcg_at_1000 value: 41.045 - type: ndcg_at_3 value: 29.236 - type: ndcg_at_5 value: 31.258000000000003 - type: precision_at_1 value: 24.847 - type: precision_at_10 value: 5.353 - type: precision_at_100 value: 0.853 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 12.679000000000002 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 22.081999999999997 - type: recall_at_10 value: 43.505 - type: recall_at_100 value: 66.45400000000001 - type: recall_at_1000 value: 86.378 - type: recall_at_3 value: 32.163000000000004 - type: recall_at_5 value: 37.059999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 15.540000000000001 - type: map_at_10 value: 22.362000000000002 - type: map_at_100 value: 23.435 - type: map_at_1000 value: 23.564 - type: map_at_3 value: 20.143 - type: map_at_5 value: 21.324 - type: mrr_at_1 value: 18.892 - type: mrr_at_10 value: 25.942999999999998 - type: mrr_at_100 value: 26.883000000000003 - type: mrr_at_1000 value: 26.968999999999998 - type: mrr_at_3 value: 23.727 - type: mrr_at_5 value: 24.923000000000002 - type: ndcg_at_1 value: 18.892 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 32.066 - type: ndcg_at_1000 value: 35.166 - type: ndcg_at_3 value: 22.706 - type: ndcg_at_5 value: 24.508 - type: precision_at_1 value: 18.892 - type: precision_at_10 value: 4.942 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 10.748000000000001 - type: precision_at_5 value: 7.784000000000001 - type: recall_at_1 value: 15.540000000000001 - type: recall_at_10 value: 36.742999999999995 - type: recall_at_100 value: 60.525 - type: recall_at_1000 value: 82.57600000000001 - type: recall_at_3 value: 25.252000000000002 - type: recall_at_5 value: 29.872 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.453 - type: map_at_10 value: 33.363 - type: map_at_100 value: 34.579 - type: map_at_1000 value: 34.686 - type: map_at_3 value: 30.583 - type: map_at_5 value: 32.118 - type: mrr_at_1 value: 28.918 - type: mrr_at_10 value: 37.675 - type: mrr_at_100 value: 38.567 - type: mrr_at_1000 value: 38.632 - type: mrr_at_3 value: 35.260999999999996 - type: mrr_at_5 value: 36.576 - type: ndcg_at_1 value: 28.918 - type: ndcg_at_10 value: 38.736 - type: ndcg_at_100 value: 44.261 - type: ndcg_at_1000 value: 46.72 - type: ndcg_at_3 value: 33.81 - type: ndcg_at_5 value: 36.009 - type: precision_at_1 value: 28.918 - type: precision_at_10 value: 6.586 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.360999999999999 - type: precision_at_5 value: 10.857999999999999 - type: recall_at_1 value: 24.453 - type: recall_at_10 value: 50.885999999999996 - type: recall_at_100 value: 75.03 - type: recall_at_1000 value: 92.123 - type: recall_at_3 value: 37.138 - type: recall_at_5 value: 42.864999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.57 - type: map_at_10 value: 33.672000000000004 - type: map_at_100 value: 35.244 - type: map_at_1000 value: 35.467 - type: map_at_3 value: 30.712 - type: map_at_5 value: 32.383 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.344 - type: mrr_at_100 value: 39.219 - type: mrr_at_1000 value: 39.282000000000004 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.273 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 39.567 - type: ndcg_at_100 value: 45.097 - type: ndcg_at_1000 value: 47.923 - type: ndcg_at_3 value: 34.768 - type: ndcg_at_5 value: 37.122 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.5889999999999995 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 16.337 - type: precision_at_5 value: 12.055 - type: recall_at_1 value: 24.57 - type: recall_at_10 value: 51.00900000000001 - type: recall_at_100 value: 75.423 - type: recall_at_1000 value: 93.671 - type: recall_at_3 value: 36.925999999999995 - type: recall_at_5 value: 43.245 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 21.356 - type: map_at_10 value: 27.904 - type: map_at_100 value: 28.938000000000002 - type: map_at_1000 value: 29.036 - type: map_at_3 value: 25.726 - type: map_at_5 value: 26.935 - type: mrr_at_1 value: 22.551 - type: mrr_at_10 value: 29.259 - type: mrr_at_100 value: 30.272 - type: mrr_at_1000 value: 30.348000000000003 - type: mrr_at_3 value: 27.295 - type: mrr_at_5 value: 28.358 - type: ndcg_at_1 value: 22.551 - type: ndcg_at_10 value: 31.817 - type: ndcg_at_100 value: 37.164 - type: ndcg_at_1000 value: 39.82 - type: ndcg_at_3 value: 27.595999999999997 - type: ndcg_at_5 value: 29.568 - type: precision_at_1 value: 22.551 - type: precision_at_10 value: 4.917 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 11.583 - type: precision_at_5 value: 8.133 - type: recall_at_1 value: 21.356 - type: recall_at_10 value: 42.489 - type: recall_at_100 value: 67.128 - type: recall_at_1000 value: 87.441 - type: recall_at_3 value: 31.165 - type: recall_at_5 value: 35.853 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 12.306000000000001 - type: map_at_10 value: 21.523 - type: map_at_100 value: 23.358 - type: map_at_1000 value: 23.541 - type: map_at_3 value: 17.809 - type: map_at_5 value: 19.631 - type: mrr_at_1 value: 27.948 - type: mrr_at_10 value: 40.355000000000004 - type: mrr_at_100 value: 41.166000000000004 - type: mrr_at_1000 value: 41.203 - type: mrr_at_3 value: 36.819 - type: mrr_at_5 value: 38.958999999999996 - type: ndcg_at_1 value: 27.948 - type: ndcg_at_10 value: 30.462 - type: ndcg_at_100 value: 37.473 - type: ndcg_at_1000 value: 40.717999999999996 - type: ndcg_at_3 value: 24.646 - type: ndcg_at_5 value: 26.642 - type: precision_at_1 value: 27.948 - type: precision_at_10 value: 9.648 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 18.48 - type: precision_at_5 value: 14.293 - type: recall_at_1 value: 12.306000000000001 - type: recall_at_10 value: 37.181 - type: recall_at_100 value: 61.148 - type: recall_at_1000 value: 79.401 - type: recall_at_3 value: 22.883 - type: recall_at_5 value: 28.59 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 9.357 - type: map_at_10 value: 18.849 - type: map_at_100 value: 25.369000000000003 - type: map_at_1000 value: 26.950000000000003 - type: map_at_3 value: 13.625000000000002 - type: map_at_5 value: 15.956999999999999 - type: mrr_at_1 value: 67.75 - type: mrr_at_10 value: 74.734 - type: mrr_at_100 value: 75.1 - type: mrr_at_1000 value: 75.10900000000001 - type: mrr_at_3 value: 73.542 - type: mrr_at_5 value: 74.167 - type: ndcg_at_1 value: 55.375 - type: ndcg_at_10 value: 39.873999999999995 - type: ndcg_at_100 value: 43.098 - type: ndcg_at_1000 value: 50.69200000000001 - type: ndcg_at_3 value: 44.856 - type: ndcg_at_5 value: 42.138999999999996 - type: precision_at_1 value: 67.75 - type: precision_at_10 value: 31.1 - type: precision_at_100 value: 9.303 - type: precision_at_1000 value: 2.0060000000000002 - type: precision_at_3 value: 48.25 - type: precision_at_5 value: 40.949999999999996 - type: recall_at_1 value: 9.357 - type: recall_at_10 value: 23.832 - type: recall_at_100 value: 47.906 - type: recall_at_1000 value: 71.309 - type: recall_at_3 value: 14.512 - type: recall_at_5 value: 18.3 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.655 - type: f1 value: 45.51976190938951 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 62.739999999999995 - type: map_at_10 value: 73.07000000000001 - type: map_at_100 value: 73.398 - type: map_at_1000 value: 73.41 - type: map_at_3 value: 71.33800000000001 - type: map_at_5 value: 72.423 - type: mrr_at_1 value: 67.777 - type: mrr_at_10 value: 77.873 - type: mrr_at_100 value: 78.091 - type: mrr_at_1000 value: 78.094 - type: mrr_at_3 value: 76.375 - type: mrr_at_5 value: 77.316 - type: ndcg_at_1 value: 67.777 - type: ndcg_at_10 value: 78.24 - type: ndcg_at_100 value: 79.557 - type: ndcg_at_1000 value: 79.814 - type: ndcg_at_3 value: 75.125 - type: ndcg_at_5 value: 76.834 - type: precision_at_1 value: 67.777 - type: precision_at_10 value: 9.832 - type: precision_at_100 value: 1.061 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 29.433 - type: precision_at_5 value: 18.665000000000003 - type: recall_at_1 value: 62.739999999999995 - type: recall_at_10 value: 89.505 - type: recall_at_100 value: 95.102 - type: recall_at_1000 value: 96.825 - type: recall_at_3 value: 81.028 - type: recall_at_5 value: 85.28099999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 18.467 - type: map_at_10 value: 30.020999999999997 - type: map_at_100 value: 31.739 - type: map_at_1000 value: 31.934 - type: map_at_3 value: 26.003 - type: map_at_5 value: 28.338 - type: mrr_at_1 value: 35.339999999999996 - type: mrr_at_10 value: 44.108999999999995 - type: mrr_at_100 value: 44.993 - type: mrr_at_1000 value: 45.042 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 43.14 - type: ndcg_at_1 value: 35.339999999999996 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 43.852999999999994 - type: ndcg_at_1000 value: 47.235 - type: ndcg_at_3 value: 33.5 - type: ndcg_at_5 value: 34.985 - type: precision_at_1 value: 35.339999999999996 - type: precision_at_10 value: 10.247 - type: precision_at_100 value: 1.7149999999999999 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 22.222 - type: precision_at_5 value: 16.573999999999998 - type: recall_at_1 value: 18.467 - type: recall_at_10 value: 44.080999999999996 - type: recall_at_100 value: 68.72200000000001 - type: recall_at_1000 value: 89.087 - type: recall_at_3 value: 30.567 - type: recall_at_5 value: 36.982 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 35.726 - type: map_at_10 value: 50.207 - type: map_at_100 value: 51.05499999999999 - type: map_at_1000 value: 51.12799999999999 - type: map_at_3 value: 47.576 - type: map_at_5 value: 49.172 - type: mrr_at_1 value: 71.452 - type: mrr_at_10 value: 77.41900000000001 - type: mrr_at_100 value: 77.711 - type: mrr_at_1000 value: 77.723 - type: mrr_at_3 value: 76.39399999999999 - type: mrr_at_5 value: 77.00099999999999 - type: ndcg_at_1 value: 71.452 - type: ndcg_at_10 value: 59.260999999999996 - type: ndcg_at_100 value: 62.424 - type: ndcg_at_1000 value: 63.951 - type: ndcg_at_3 value: 55.327000000000005 - type: ndcg_at_5 value: 57.416999999999994 - type: precision_at_1 value: 71.452 - type: precision_at_10 value: 12.061 - type: precision_at_100 value: 1.455 - type: precision_at_1000 value: 0.166 - type: precision_at_3 value: 34.36 - type: precision_at_5 value: 22.266 - type: recall_at_1 value: 35.726 - type: recall_at_10 value: 60.304 - type: recall_at_100 value: 72.75500000000001 - type: recall_at_1000 value: 82.978 - type: recall_at_3 value: 51.54 - type: recall_at_5 value: 55.665 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 66.63759999999999 - type: ap value: 61.48938261286748 - type: f1 value: 66.35089269264965 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.842 - type: map_at_10 value: 32.992 - type: map_at_100 value: 34.236 - type: map_at_1000 value: 34.286 - type: map_at_3 value: 29.049000000000003 - type: map_at_5 value: 31.391999999999996 - type: mrr_at_1 value: 21.375 - type: mrr_at_10 value: 33.581 - type: mrr_at_100 value: 34.760000000000005 - type: mrr_at_1000 value: 34.803 - type: mrr_at_3 value: 29.704000000000004 - type: mrr_at_5 value: 32.015 - type: ndcg_at_1 value: 21.375 - type: ndcg_at_10 value: 39.905 - type: ndcg_at_100 value: 45.843 - type: ndcg_at_1000 value: 47.083999999999996 - type: ndcg_at_3 value: 31.918999999999997 - type: ndcg_at_5 value: 36.107 - type: precision_at_1 value: 21.375 - type: precision_at_10 value: 6.393 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.663 - type: precision_at_5 value: 10.324 - type: recall_at_1 value: 20.842 - type: recall_at_10 value: 61.17 - type: recall_at_100 value: 88.518 - type: recall_at_1000 value: 97.993 - type: recall_at_3 value: 39.571 - type: recall_at_5 value: 49.653999999999996 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 93.46557227542178 - type: f1 value: 92.87345917772146 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 72.42134062927497 - type: f1 value: 55.03624810959269 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 70.3866845998655 - type: f1 value: 68.9674519872921 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.27774041694687 - type: f1 value: 76.72936190462792 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.511745925773337 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.764235987575365 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.29353136386601 - type: mrr value: 33.536774455851685 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.702 - type: map_at_10 value: 13.642000000000001 - type: map_at_100 value: 17.503 - type: map_at_1000 value: 19.126 - type: map_at_3 value: 9.748 - type: map_at_5 value: 11.642 - type: mrr_at_1 value: 45.82 - type: mrr_at_10 value: 54.821 - type: mrr_at_100 value: 55.422000000000004 - type: mrr_at_1000 value: 55.452999999999996 - type: mrr_at_3 value: 52.373999999999995 - type: mrr_at_5 value: 53.937000000000005 - type: ndcg_at_1 value: 44.272 - type: ndcg_at_10 value: 36.213 - type: ndcg_at_100 value: 33.829 - type: ndcg_at_1000 value: 42.557 - type: ndcg_at_3 value: 40.814 - type: ndcg_at_5 value: 39.562000000000005 - type: precision_at_1 value: 45.511 - type: precision_at_10 value: 27.214 - type: precision_at_100 value: 8.941 - type: precision_at_1000 value: 2.1870000000000003 - type: precision_at_3 value: 37.874 - type: precision_at_5 value: 34.489 - type: recall_at_1 value: 5.702 - type: recall_at_10 value: 17.638 - type: recall_at_100 value: 34.419 - type: recall_at_1000 value: 66.41 - type: recall_at_3 value: 10.914 - type: recall_at_5 value: 14.032 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 30.567 - type: map_at_10 value: 45.01 - type: map_at_100 value: 46.091 - type: map_at_1000 value: 46.126 - type: map_at_3 value: 40.897 - type: map_at_5 value: 43.301 - type: mrr_at_1 value: 34.56 - type: mrr_at_10 value: 47.725 - type: mrr_at_100 value: 48.548 - type: mrr_at_1000 value: 48.571999999999996 - type: mrr_at_3 value: 44.361 - type: mrr_at_5 value: 46.351 - type: ndcg_at_1 value: 34.531 - type: ndcg_at_10 value: 52.410000000000004 - type: ndcg_at_100 value: 56.999 - type: ndcg_at_1000 value: 57.830999999999996 - type: ndcg_at_3 value: 44.734 - type: ndcg_at_5 value: 48.701 - type: precision_at_1 value: 34.531 - type: precision_at_10 value: 8.612 - type: precision_at_100 value: 1.118 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.307 - type: precision_at_5 value: 14.519000000000002 - type: recall_at_1 value: 30.567 - type: recall_at_10 value: 72.238 - type: recall_at_100 value: 92.154 - type: recall_at_1000 value: 98.375 - type: recall_at_3 value: 52.437999999999995 - type: recall_at_5 value: 61.516999999999996 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 65.98 - type: map_at_10 value: 80.05600000000001 - type: map_at_100 value: 80.76299999999999 - type: map_at_1000 value: 80.786 - type: map_at_3 value: 76.848 - type: map_at_5 value: 78.854 - type: mrr_at_1 value: 75.86 - type: mrr_at_10 value: 83.397 - type: mrr_at_100 value: 83.555 - type: mrr_at_1000 value: 83.557 - type: mrr_at_3 value: 82.033 - type: mrr_at_5 value: 82.97 - type: ndcg_at_1 value: 75.88000000000001 - type: ndcg_at_10 value: 84.58099999999999 - type: ndcg_at_100 value: 86.151 - type: ndcg_at_1000 value: 86.315 - type: ndcg_at_3 value: 80.902 - type: ndcg_at_5 value: 82.953 - type: precision_at_1 value: 75.88000000000001 - type: precision_at_10 value: 12.986 - type: precision_at_100 value: 1.5110000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.382999999999996 - type: precision_at_5 value: 23.555999999999997 - type: recall_at_1 value: 65.98 - type: recall_at_10 value: 93.716 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.97 - type: recall_at_3 value: 83.551 - type: recall_at_5 value: 88.998 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 40.45148482612238 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 55.749490673039126 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.903 - type: map_at_10 value: 11.926 - type: map_at_100 value: 13.916999999999998 - type: map_at_1000 value: 14.215 - type: map_at_3 value: 8.799999999999999 - type: map_at_5 value: 10.360999999999999 - type: mrr_at_1 value: 24.099999999999998 - type: mrr_at_10 value: 34.482 - type: mrr_at_100 value: 35.565999999999995 - type: mrr_at_1000 value: 35.619 - type: mrr_at_3 value: 31.433 - type: mrr_at_5 value: 33.243 - type: ndcg_at_1 value: 24.099999999999998 - type: ndcg_at_10 value: 19.872999999999998 - type: ndcg_at_100 value: 27.606 - type: ndcg_at_1000 value: 32.811 - type: ndcg_at_3 value: 19.497999999999998 - type: ndcg_at_5 value: 16.813 - type: precision_at_1 value: 24.099999999999998 - type: precision_at_10 value: 10.08 - type: precision_at_100 value: 2.122 - type: precision_at_1000 value: 0.337 - type: precision_at_3 value: 18.2 - type: precision_at_5 value: 14.62 - type: recall_at_1 value: 4.903 - type: recall_at_10 value: 20.438000000000002 - type: recall_at_100 value: 43.043 - type: recall_at_1000 value: 68.41000000000001 - type: recall_at_3 value: 11.068 - type: recall_at_5 value: 14.818000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 78.58086597995997 - type: cos_sim_spearman value: 69.63214182814991 - type: euclidean_pearson value: 72.76175489042691 - type: euclidean_spearman value: 67.84965161872971 - type: manhattan_pearson value: 72.73812689782592 - type: manhattan_spearman value: 67.83610439531277 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.13970861325006 - type: cos_sim_spearman value: 67.5020551515597 - type: euclidean_pearson value: 66.33415412418276 - type: euclidean_spearman value: 66.82145056673268 - type: manhattan_pearson value: 66.55489484006415 - type: manhattan_spearman value: 66.95147433279057 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 78.85850536483447 - type: cos_sim_spearman value: 79.1633350177206 - type: euclidean_pearson value: 72.74090561408477 - type: euclidean_spearman value: 73.57374448302961 - type: manhattan_pearson value: 72.92980654233226 - type: manhattan_spearman value: 73.72777155112588 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 79.51125593897028 - type: cos_sim_spearman value: 74.46048326701329 - type: euclidean_pearson value: 70.87726087052985 - type: euclidean_spearman value: 67.7721470654411 - type: manhattan_pearson value: 71.05892792135637 - type: manhattan_spearman value: 67.93472619779037 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 83.8299348880489 - type: cos_sim_spearman value: 84.47194637929275 - type: euclidean_pearson value: 78.68768462480418 - type: euclidean_spearman value: 79.80526323901917 - type: manhattan_pearson value: 78.6810718151946 - type: manhattan_spearman value: 79.7820584821254 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.99206664843005 - type: cos_sim_spearman value: 80.96089203722137 - type: euclidean_pearson value: 71.31216213716365 - type: euclidean_spearman value: 71.45258140049407 - type: manhattan_pearson value: 71.26140340402836 - type: manhattan_spearman value: 71.3896894666943 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.35697089594868 - type: cos_sim_spearman value: 87.78202647220289 - type: euclidean_pearson value: 84.20969668786667 - type: euclidean_spearman value: 83.91876425459982 - type: manhattan_pearson value: 84.24429755612542 - type: manhattan_spearman value: 83.98826315103398 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 69.06962775868384 - type: cos_sim_spearman value: 69.34889515492327 - type: euclidean_pearson value: 69.28108180412313 - type: euclidean_spearman value: 69.6437114853659 - type: manhattan_pearson value: 69.39974983734993 - type: manhattan_spearman value: 69.69057284482079 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 82.42553734213958 - type: cos_sim_spearman value: 81.38977341532744 - type: euclidean_pearson value: 76.47494587945522 - type: euclidean_spearman value: 75.92794860531089 - type: manhattan_pearson value: 76.4768777169467 - type: manhattan_spearman value: 75.9252673228599 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 80.78825425914722 - type: mrr value: 94.60017197762296 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 60.633 - type: map_at_10 value: 70.197 - type: map_at_100 value: 70.758 - type: map_at_1000 value: 70.765 - type: map_at_3 value: 67.082 - type: map_at_5 value: 69.209 - type: mrr_at_1 value: 63.333 - type: mrr_at_10 value: 71.17 - type: mrr_at_100 value: 71.626 - type: mrr_at_1000 value: 71.633 - type: mrr_at_3 value: 68.833 - type: mrr_at_5 value: 70.6 - type: ndcg_at_1 value: 63.333 - type: ndcg_at_10 value: 74.697 - type: ndcg_at_100 value: 76.986 - type: ndcg_at_1000 value: 77.225 - type: ndcg_at_3 value: 69.527 - type: ndcg_at_5 value: 72.816 - type: precision_at_1 value: 63.333 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.103 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.889000000000003 - type: precision_at_5 value: 18.2 - type: recall_at_1 value: 60.633 - type: recall_at_10 value: 87.36699999999999 - type: recall_at_100 value: 97.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 73.656 - type: recall_at_5 value: 82.083 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76633663366337 - type: cos_sim_ap value: 93.84024096781063 - type: cos_sim_f1 value: 88.08080808080808 - type: cos_sim_precision value: 88.9795918367347 - type: cos_sim_recall value: 87.2 - type: dot_accuracy value: 99.46336633663367 - type: dot_ap value: 75.78127156965245 - type: dot_f1 value: 71.41403865717193 - type: dot_precision value: 72.67080745341616 - type: dot_recall value: 70.19999999999999 - type: euclidean_accuracy value: 99.67524752475248 - type: euclidean_ap value: 88.61274955249769 - type: euclidean_f1 value: 82.30852211434735 - type: euclidean_precision value: 89.34426229508196 - type: euclidean_recall value: 76.3 - type: manhattan_accuracy value: 99.67722772277227 - type: manhattan_ap value: 88.77516158012779 - type: manhattan_f1 value: 82.36536430834212 - type: manhattan_precision value: 87.24832214765101 - type: manhattan_recall value: 78.0 - type: max_accuracy value: 99.76633663366337 - type: max_ap value: 93.84024096781063 - type: max_f1 value: 88.08080808080808 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.20812266121527 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 33.954248554638056 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 51.52800990025549 - type: mrr value: 52.360394915541974 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.737881131277356 - type: cos_sim_spearman value: 31.45979323917254 - type: dot_pearson value: 26.24686017962023 - type: dot_spearman value: 25.006732878791743 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.253 - type: map_at_10 value: 2.1399999999999997 - type: map_at_100 value: 12.873000000000001 - type: map_at_1000 value: 31.002000000000002 - type: map_at_3 value: 0.711 - type: map_at_5 value: 1.125 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: ndcg_at_1 value: 94.0 - type: ndcg_at_10 value: 84.881 - type: ndcg_at_100 value: 64.694 - type: ndcg_at_1000 value: 56.85 - type: ndcg_at_3 value: 90.061 - type: ndcg_at_5 value: 87.155 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 88.8 - type: precision_at_100 value: 65.7 - type: precision_at_1000 value: 25.080000000000002 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 90.0 - type: recall_at_1 value: 0.253 - type: recall_at_10 value: 2.292 - type: recall_at_100 value: 15.78 - type: recall_at_1000 value: 53.015 - type: recall_at_3 value: 0.7270000000000001 - type: recall_at_5 value: 1.162 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 2.116 - type: map_at_10 value: 9.625 - type: map_at_100 value: 15.641 - type: map_at_1000 value: 17.127 - type: map_at_3 value: 4.316 - type: map_at_5 value: 6.208 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 48.083999999999996 - type: mrr_at_100 value: 48.631 - type: mrr_at_1000 value: 48.649 - type: mrr_at_3 value: 42.857 - type: mrr_at_5 value: 46.224 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 25.430999999999997 - type: ndcg_at_100 value: 36.344 - type: ndcg_at_1000 value: 47.676 - type: ndcg_at_3 value: 26.144000000000002 - type: ndcg_at_5 value: 26.304 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 24.082 - type: precision_at_100 value: 7.714 - type: precision_at_1000 value: 1.5310000000000001 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 2.116 - type: recall_at_10 value: 16.794 - type: recall_at_100 value: 47.452 - type: recall_at_1000 value: 82.312 - type: recall_at_3 value: 5.306 - type: recall_at_5 value: 9.306000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 67.709 - type: ap value: 13.541535578501716 - type: f1 value: 52.569619919446794 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.850594227504246 - type: f1 value: 57.233377364910574 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 39.463722986090474 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.09131549144662 - type: cos_sim_ap value: 66.86677647503386 - type: cos_sim_f1 value: 62.94631710362049 - type: cos_sim_precision value: 59.73933649289099 - type: cos_sim_recall value: 66.51715039577837 - type: dot_accuracy value: 80.27656911247541 - type: dot_ap value: 54.291720398612085 - type: dot_f1 value: 54.77150537634409 - type: dot_precision value: 47.58660957571039 - type: dot_recall value: 64.5118733509235 - type: euclidean_accuracy value: 82.76211480002385 - type: euclidean_ap value: 62.430397690753296 - type: euclidean_f1 value: 59.191590539356774 - type: euclidean_precision value: 56.296119971435374 - type: euclidean_recall value: 62.401055408970976 - type: manhattan_accuracy value: 82.7561542588067 - type: manhattan_ap value: 62.41882051995577 - type: manhattan_f1 value: 59.32101002778785 - type: manhattan_precision value: 54.71361711611321 - type: manhattan_recall value: 64.77572559366754 - type: max_accuracy value: 84.09131549144662 - type: max_ap value: 66.86677647503386 - type: max_f1 value: 62.94631710362049 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.79574649745798 - type: cos_sim_ap value: 85.28960532524223 - type: cos_sim_f1 value: 77.98460043358001 - type: cos_sim_precision value: 75.78090948714224 - type: cos_sim_recall value: 80.32029565753002 - type: dot_accuracy value: 85.5939767920208 - type: dot_ap value: 76.14131706694056 - type: dot_f1 value: 72.70246298696868 - type: dot_precision value: 65.27012127894156 - type: dot_recall value: 82.04496458269172 - type: euclidean_accuracy value: 86.72332828812046 - type: euclidean_ap value: 80.84854809178995 - type: euclidean_f1 value: 72.47657499809551 - type: euclidean_precision value: 71.71717171717171 - type: euclidean_recall value: 73.25223283030489 - type: manhattan_accuracy value: 86.7563162184189 - type: manhattan_ap value: 80.87598895575626 - type: manhattan_f1 value: 72.54617892068092 - type: manhattan_precision value: 68.49268225960881 - type: manhattan_recall value: 77.10963966738528 - type: max_accuracy value: 88.79574649745798 - type: max_ap value: 85.28960532524223 - type: max_f1 value: 77.98460043358001

SGPT-5.8B-weightedmean-msmarco-specb-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 249592 with parameters:

{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 5e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel 
  (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}