Muennighoff's picture
Fix scores
c135b34
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: SGPT-125M-weightedmean-msmarco-specb-bitfit
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 61.23880597014926
          - type: ap
            value: 25.854431650388644
          - type: f1
            value: 55.751862762818604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 56.88436830835117
          - type: ap
            value: 72.67279104379772
          - type: f1
            value: 54.449840243786404
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 58.27586206896551
          - type: ap
            value: 14.067357642500387
          - type: f1
            value: 48.172318518691334
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 54.64668094218415
          - type: ap
            value: 11.776694555054965
          - type: f1
            value: 44.526622834078765
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
        metrics:
          - type: accuracy
            value: 65.401225
          - type: ap
            value: 60.22809958678552
          - type: f1
            value: 65.0251824898292
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 31.165999999999993
          - type: f1
            value: 30.908870050167437
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 24.79
          - type: f1
            value: 24.5833598854121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 26.643999999999995
          - type: f1
            value: 26.39012792213563
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 26.386000000000003
          - type: f1
            value: 26.276867791454873
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 22.078000000000003
          - type: f1
            value: 21.797960290226843
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 24.274
          - type: f1
            value: 23.887054434822627
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
        metrics:
          - type: map_at_1
            value: 22.404
          - type: map_at_10
            value: 36.845
          - type: map_at_100
            value: 37.945
          - type: map_at_1000
            value: 37.966
          - type: map_at_3
            value: 31.78
          - type: map_at_5
            value: 34.608
          - type: mrr_at_1
            value: 22.902
          - type: mrr_at_10
            value: 37.034
          - type: mrr_at_100
            value: 38.134
          - type: mrr_at_1000
            value: 38.155
          - type: mrr_at_3
            value: 31.935000000000002
          - type: mrr_at_5
            value: 34.812
          - type: ndcg_at_1
            value: 22.404
          - type: ndcg_at_10
            value: 45.425
          - type: ndcg_at_100
            value: 50.354
          - type: ndcg_at_1000
            value: 50.873999999999995
          - type: ndcg_at_3
            value: 34.97
          - type: ndcg_at_5
            value: 40.081
          - type: precision_at_1
            value: 22.404
          - type: precision_at_10
            value: 7.303999999999999
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.746
          - type: precision_at_5
            value: 11.337
          - type: recall_at_1
            value: 22.404
          - type: recall_at_10
            value: 73.044
          - type: recall_at_100
            value: 95.092
          - type: recall_at_1000
            value: 99.075
          - type: recall_at_3
            value: 44.239
          - type: recall_at_5
            value: 56.686
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
        metrics:
          - type: v_measure
            value: 39.70858340673288
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
        metrics:
          - type: v_measure
            value: 28.242847713721048
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
        metrics:
          - type: map
            value: 55.83700395192393
          - type: mrr
            value: 70.3891307215407
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: 9ee918f184421b6bd48b78f6c714d86546106103
        metrics:
          - type: cos_sim_pearson
            value: 79.25366801756223
          - type: cos_sim_spearman
            value: 75.20954502580506
          - type: euclidean_pearson
            value: 78.79900722991617
          - type: euclidean_spearman
            value: 77.79996549607588
          - type: manhattan_pearson
            value: 78.18408109480399
          - type: manhattan_spearman
            value: 76.85958262303106
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
        metrics:
          - type: accuracy
            value: 77.70454545454545
          - type: f1
            value: 77.6929000113803
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
        metrics:
          - type: v_measure
            value: 33.63260395543984
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
        metrics:
          - type: v_measure
            value: 27.038042665369925
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 22.139
          - type: map_at_10
            value: 28.839
          - type: map_at_100
            value: 30.023
          - type: map_at_1000
            value: 30.153000000000002
          - type: map_at_3
            value: 26.521
          - type: map_at_5
            value: 27.775
          - type: mrr_at_1
            value: 26.466
          - type: mrr_at_10
            value: 33.495000000000005
          - type: mrr_at_100
            value: 34.416999999999994
          - type: mrr_at_1000
            value: 34.485
          - type: mrr_at_3
            value: 31.402
          - type: mrr_at_5
            value: 32.496
          - type: ndcg_at_1
            value: 26.466
          - type: ndcg_at_10
            value: 33.372
          - type: ndcg_at_100
            value: 38.7
          - type: ndcg_at_1000
            value: 41.696
          - type: ndcg_at_3
            value: 29.443
          - type: ndcg_at_5
            value: 31.121
          - type: precision_at_1
            value: 26.466
          - type: precision_at_10
            value: 6.037
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 13.782
          - type: precision_at_5
            value: 9.757
          - type: recall_at_1
            value: 22.139
          - type: recall_at_10
            value: 42.39
          - type: recall_at_100
            value: 65.427
          - type: recall_at_1000
            value: 86.04899999999999
          - type: recall_at_3
            value: 31.127
          - type: recall_at_5
            value: 35.717999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 20.652
          - type: map_at_10
            value: 27.558
          - type: map_at_100
            value: 28.473
          - type: map_at_1000
            value: 28.577
          - type: map_at_3
            value: 25.402
          - type: map_at_5
            value: 26.68
          - type: mrr_at_1
            value: 25.223000000000003
          - type: mrr_at_10
            value: 31.966
          - type: mrr_at_100
            value: 32.664
          - type: mrr_at_1000
            value: 32.724
          - type: mrr_at_3
            value: 30.074
          - type: mrr_at_5
            value: 31.249
          - type: ndcg_at_1
            value: 25.223000000000003
          - type: ndcg_at_10
            value: 31.694
          - type: ndcg_at_100
            value: 35.662
          - type: ndcg_at_1000
            value: 38.092
          - type: ndcg_at_3
            value: 28.294000000000004
          - type: ndcg_at_5
            value: 30.049
          - type: precision_at_1
            value: 25.223000000000003
          - type: precision_at_10
            value: 5.777
          - type: precision_at_100
            value: 0.9730000000000001
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_3
            value: 13.397
          - type: precision_at_5
            value: 9.605
          - type: recall_at_1
            value: 20.652
          - type: recall_at_10
            value: 39.367999999999995
          - type: recall_at_100
            value: 56.485
          - type: recall_at_1000
            value: 73.292
          - type: recall_at_3
            value: 29.830000000000002
          - type: recall_at_5
            value: 34.43
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 25.180000000000003
          - type: map_at_10
            value: 34.579
          - type: map_at_100
            value: 35.589999999999996
          - type: map_at_1000
            value: 35.68
          - type: map_at_3
            value: 31.735999999999997
          - type: map_at_5
            value: 33.479
          - type: mrr_at_1
            value: 29.467
          - type: mrr_at_10
            value: 37.967
          - type: mrr_at_100
            value: 38.800000000000004
          - type: mrr_at_1000
            value: 38.858
          - type: mrr_at_3
            value: 35.465
          - type: mrr_at_5
            value: 37.057
          - type: ndcg_at_1
            value: 29.467
          - type: ndcg_at_10
            value: 39.796
          - type: ndcg_at_100
            value: 44.531
          - type: ndcg_at_1000
            value: 46.666000000000004
          - type: ndcg_at_3
            value: 34.676
          - type: ndcg_at_5
            value: 37.468
          - type: precision_at_1
            value: 29.467
          - type: precision_at_10
            value: 6.601999999999999
          - type: precision_at_100
            value: 0.9900000000000001
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 15.568999999999999
          - type: precision_at_5
            value: 11.172
          - type: recall_at_1
            value: 25.180000000000003
          - type: recall_at_10
            value: 52.269
          - type: recall_at_100
            value: 73.574
          - type: recall_at_1000
            value: 89.141
          - type: recall_at_3
            value: 38.522
          - type: recall_at_5
            value: 45.323
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 16.303
          - type: map_at_10
            value: 21.629
          - type: map_at_100
            value: 22.387999999999998
          - type: map_at_1000
            value: 22.489
          - type: map_at_3
            value: 19.608
          - type: map_at_5
            value: 20.774
          - type: mrr_at_1
            value: 17.740000000000002
          - type: mrr_at_10
            value: 23.214000000000002
          - type: mrr_at_100
            value: 23.97
          - type: mrr_at_1000
            value: 24.054000000000002
          - type: mrr_at_3
            value: 21.243000000000002
          - type: mrr_at_5
            value: 22.322
          - type: ndcg_at_1
            value: 17.740000000000002
          - type: ndcg_at_10
            value: 25.113000000000003
          - type: ndcg_at_100
            value: 29.287999999999997
          - type: ndcg_at_1000
            value: 32.204
          - type: ndcg_at_3
            value: 21.111
          - type: ndcg_at_5
            value: 23.061999999999998
          - type: precision_at_1
            value: 17.740000000000002
          - type: precision_at_10
            value: 3.955
          - type: precision_at_100
            value: 0.644
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 8.851
          - type: precision_at_5
            value: 6.418
          - type: recall_at_1
            value: 16.303
          - type: recall_at_10
            value: 34.487
          - type: recall_at_100
            value: 54.413999999999994
          - type: recall_at_1000
            value: 77.158
          - type: recall_at_3
            value: 23.733
          - type: recall_at_5
            value: 28.381
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 10.133000000000001
          - type: map_at_10
            value: 15.665999999999999
          - type: map_at_100
            value: 16.592000000000002
          - type: map_at_1000
            value: 16.733999999999998
          - type: map_at_3
            value: 13.625000000000002
          - type: map_at_5
            value: 14.721
          - type: mrr_at_1
            value: 12.562000000000001
          - type: mrr_at_10
            value: 18.487000000000002
          - type: mrr_at_100
            value: 19.391
          - type: mrr_at_1000
            value: 19.487
          - type: mrr_at_3
            value: 16.418
          - type: mrr_at_5
            value: 17.599999999999998
          - type: ndcg_at_1
            value: 12.562000000000001
          - type: ndcg_at_10
            value: 19.43
          - type: ndcg_at_100
            value: 24.546
          - type: ndcg_at_1000
            value: 28.193
          - type: ndcg_at_3
            value: 15.509999999999998
          - type: ndcg_at_5
            value: 17.322000000000003
          - type: precision_at_1
            value: 12.562000000000001
          - type: precision_at_10
            value: 3.794
          - type: precision_at_100
            value: 0.74
          - type: precision_at_1000
            value: 0.122
          - type: precision_at_3
            value: 7.546
          - type: precision_at_5
            value: 5.721
          - type: recall_at_1
            value: 10.133000000000001
          - type: recall_at_10
            value: 28.261999999999997
          - type: recall_at_100
            value: 51.742999999999995
          - type: recall_at_1000
            value: 78.075
          - type: recall_at_3
            value: 17.634
          - type: recall_at_5
            value: 22.128999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 19.991999999999997
          - type: map_at_10
            value: 27.346999999999998
          - type: map_at_100
            value: 28.582
          - type: map_at_1000
            value: 28.716
          - type: map_at_3
            value: 24.907
          - type: map_at_5
            value: 26.1
          - type: mrr_at_1
            value: 23.773
          - type: mrr_at_10
            value: 31.647
          - type: mrr_at_100
            value: 32.639
          - type: mrr_at_1000
            value: 32.706
          - type: mrr_at_3
            value: 29.195
          - type: mrr_at_5
            value: 30.484
          - type: ndcg_at_1
            value: 23.773
          - type: ndcg_at_10
            value: 32.322
          - type: ndcg_at_100
            value: 37.996
          - type: ndcg_at_1000
            value: 40.819
          - type: ndcg_at_3
            value: 27.876
          - type: ndcg_at_5
            value: 29.664
          - type: precision_at_1
            value: 23.773
          - type: precision_at_10
            value: 5.976999999999999
          - type: precision_at_100
            value: 1.055
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_3
            value: 13.122
          - type: precision_at_5
            value: 9.451
          - type: recall_at_1
            value: 19.991999999999997
          - type: recall_at_10
            value: 43.106
          - type: recall_at_100
            value: 67.264
          - type: recall_at_1000
            value: 86.386
          - type: recall_at_3
            value: 30.392000000000003
          - type: recall_at_5
            value: 34.910999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 17.896
          - type: map_at_10
            value: 24.644
          - type: map_at_100
            value: 25.790000000000003
          - type: map_at_1000
            value: 25.913999999999998
          - type: map_at_3
            value: 22.694
          - type: map_at_5
            value: 23.69
          - type: mrr_at_1
            value: 21.346999999999998
          - type: mrr_at_10
            value: 28.594
          - type: mrr_at_100
            value: 29.543999999999997
          - type: mrr_at_1000
            value: 29.621
          - type: mrr_at_3
            value: 26.807
          - type: mrr_at_5
            value: 27.669
          - type: ndcg_at_1
            value: 21.346999999999998
          - type: ndcg_at_10
            value: 28.833
          - type: ndcg_at_100
            value: 34.272000000000006
          - type: ndcg_at_1000
            value: 37.355
          - type: ndcg_at_3
            value: 25.373
          - type: ndcg_at_5
            value: 26.756
          - type: precision_at_1
            value: 21.346999999999998
          - type: precision_at_10
            value: 5.2170000000000005
          - type: precision_at_100
            value: 0.954
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 11.948
          - type: precision_at_5
            value: 8.425
          - type: recall_at_1
            value: 17.896
          - type: recall_at_10
            value: 37.291000000000004
          - type: recall_at_100
            value: 61.138000000000005
          - type: recall_at_1000
            value: 83.212
          - type: recall_at_3
            value: 27.705999999999996
          - type: recall_at_5
            value: 31.234
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 17.195166666666665
          - type: map_at_10
            value: 23.329083333333333
          - type: map_at_100
            value: 24.30308333333333
          - type: map_at_1000
            value: 24.422416666666667
          - type: map_at_3
            value: 21.327416666666664
          - type: map_at_5
            value: 22.419999999999998
          - type: mrr_at_1
            value: 19.999916666666667
          - type: mrr_at_10
            value: 26.390166666666666
          - type: mrr_at_100
            value: 27.230999999999998
          - type: mrr_at_1000
            value: 27.308333333333334
          - type: mrr_at_3
            value: 24.4675
          - type: mrr_at_5
            value: 25.541083333333336
          - type: ndcg_at_1
            value: 19.999916666666667
          - type: ndcg_at_10
            value: 27.248666666666665
          - type: ndcg_at_100
            value: 32.00258333333334
          - type: ndcg_at_1000
            value: 34.9465
          - type: ndcg_at_3
            value: 23.58566666666667
          - type: ndcg_at_5
            value: 25.26341666666666
          - type: precision_at_1
            value: 19.999916666666667
          - type: precision_at_10
            value: 4.772166666666666
          - type: precision_at_100
            value: 0.847
          - type: precision_at_1000
            value: 0.12741666666666668
          - type: precision_at_3
            value: 10.756166666666669
          - type: precision_at_5
            value: 7.725416666666667
          - type: recall_at_1
            value: 17.195166666666665
          - type: recall_at_10
            value: 35.99083333333334
          - type: recall_at_100
            value: 57.467999999999996
          - type: recall_at_1000
            value: 78.82366666666667
          - type: recall_at_3
            value: 25.898499999999995
          - type: recall_at_5
            value: 30.084333333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 16.779
          - type: map_at_10
            value: 21.557000000000002
          - type: map_at_100
            value: 22.338
          - type: map_at_1000
            value: 22.421
          - type: map_at_3
            value: 19.939
          - type: map_at_5
            value: 20.903
          - type: mrr_at_1
            value: 18.404999999999998
          - type: mrr_at_10
            value: 23.435
          - type: mrr_at_100
            value: 24.179000000000002
          - type: mrr_at_1000
            value: 24.25
          - type: mrr_at_3
            value: 21.907
          - type: mrr_at_5
            value: 22.781000000000002
          - type: ndcg_at_1
            value: 18.404999999999998
          - type: ndcg_at_10
            value: 24.515
          - type: ndcg_at_100
            value: 28.721000000000004
          - type: ndcg_at_1000
            value: 31.259999999999998
          - type: ndcg_at_3
            value: 21.508
          - type: ndcg_at_5
            value: 23.01
          - type: precision_at_1
            value: 18.404999999999998
          - type: precision_at_10
            value: 3.834
          - type: precision_at_100
            value: 0.641
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 9.151
          - type: precision_at_5
            value: 6.503
          - type: recall_at_1
            value: 16.779
          - type: recall_at_10
            value: 31.730000000000004
          - type: recall_at_100
            value: 51.673
          - type: recall_at_1000
            value: 71.17599999999999
          - type: recall_at_3
            value: 23.518
          - type: recall_at_5
            value: 27.230999999999998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 9.279
          - type: map_at_10
            value: 13.822000000000001
          - type: map_at_100
            value: 14.533
          - type: map_at_1000
            value: 14.649999999999999
          - type: map_at_3
            value: 12.396
          - type: map_at_5
            value: 13.214
          - type: mrr_at_1
            value: 11.149000000000001
          - type: mrr_at_10
            value: 16.139
          - type: mrr_at_100
            value: 16.872
          - type: mrr_at_1000
            value: 16.964000000000002
          - type: mrr_at_3
            value: 14.613000000000001
          - type: mrr_at_5
            value: 15.486
          - type: ndcg_at_1
            value: 11.149000000000001
          - type: ndcg_at_10
            value: 16.82
          - type: ndcg_at_100
            value: 20.73
          - type: ndcg_at_1000
            value: 23.894000000000002
          - type: ndcg_at_3
            value: 14.11
          - type: ndcg_at_5
            value: 15.404000000000002
          - type: precision_at_1
            value: 11.149000000000001
          - type: precision_at_10
            value: 3.063
          - type: precision_at_100
            value: 0.587
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 6.699
          - type: precision_at_5
            value: 4.928
          - type: recall_at_1
            value: 9.279
          - type: recall_at_10
            value: 23.745
          - type: recall_at_100
            value: 41.873
          - type: recall_at_1000
            value: 64.982
          - type: recall_at_3
            value: 16.152
          - type: recall_at_5
            value: 19.409000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 16.36
          - type: map_at_10
            value: 21.927
          - type: map_at_100
            value: 22.889
          - type: map_at_1000
            value: 22.994
          - type: map_at_3
            value: 20.433
          - type: map_at_5
            value: 21.337
          - type: mrr_at_1
            value: 18.75
          - type: mrr_at_10
            value: 24.859
          - type: mrr_at_100
            value: 25.746999999999996
          - type: mrr_at_1000
            value: 25.829
          - type: mrr_at_3
            value: 23.383000000000003
          - type: mrr_at_5
            value: 24.297
          - type: ndcg_at_1
            value: 18.75
          - type: ndcg_at_10
            value: 25.372
          - type: ndcg_at_100
            value: 30.342999999999996
          - type: ndcg_at_1000
            value: 33.286
          - type: ndcg_at_3
            value: 22.627
          - type: ndcg_at_5
            value: 24.04
          - type: precision_at_1
            value: 18.75
          - type: precision_at_10
            value: 4.1419999999999995
          - type: precision_at_100
            value: 0.738
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 10.261000000000001
          - type: precision_at_5
            value: 7.164
          - type: recall_at_1
            value: 16.36
          - type: recall_at_10
            value: 32.949
          - type: recall_at_100
            value: 55.552
          - type: recall_at_1000
            value: 77.09899999999999
          - type: recall_at_3
            value: 25.538
          - type: recall_at_5
            value: 29.008
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 17.39
          - type: map_at_10
            value: 23.058
          - type: map_at_100
            value: 24.445
          - type: map_at_1000
            value: 24.637999999999998
          - type: map_at_3
            value: 21.037
          - type: map_at_5
            value: 21.966
          - type: mrr_at_1
            value: 19.96
          - type: mrr_at_10
            value: 26.301000000000002
          - type: mrr_at_100
            value: 27.297
          - type: mrr_at_1000
            value: 27.375
          - type: mrr_at_3
            value: 24.340999999999998
          - type: mrr_at_5
            value: 25.339
          - type: ndcg_at_1
            value: 19.96
          - type: ndcg_at_10
            value: 27.249000000000002
          - type: ndcg_at_100
            value: 32.997
          - type: ndcg_at_1000
            value: 36.359
          - type: ndcg_at_3
            value: 23.519000000000002
          - type: ndcg_at_5
            value: 24.915000000000003
          - type: precision_at_1
            value: 19.96
          - type: precision_at_10
            value: 5.356000000000001
          - type: precision_at_100
            value: 1.198
          - type: precision_at_1000
            value: 0.20400000000000001
          - type: precision_at_3
            value: 10.738
          - type: precision_at_5
            value: 7.904999999999999
          - type: recall_at_1
            value: 17.39
          - type: recall_at_10
            value: 35.254999999999995
          - type: recall_at_100
            value: 61.351
          - type: recall_at_1000
            value: 84.395
          - type: recall_at_3
            value: 25.194
          - type: recall_at_5
            value: 28.546
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 14.238999999999999
          - type: map_at_10
            value: 19.323
          - type: map_at_100
            value: 19.994
          - type: map_at_1000
            value: 20.102999999999998
          - type: map_at_3
            value: 17.631
          - type: map_at_5
            value: 18.401
          - type: mrr_at_1
            value: 15.157000000000002
          - type: mrr_at_10
            value: 20.578
          - type: mrr_at_100
            value: 21.252
          - type: mrr_at_1000
            value: 21.346999999999998
          - type: mrr_at_3
            value: 18.762
          - type: mrr_at_5
            value: 19.713
          - type: ndcg_at_1
            value: 15.157000000000002
          - type: ndcg_at_10
            value: 22.468
          - type: ndcg_at_100
            value: 26.245
          - type: ndcg_at_1000
            value: 29.534
          - type: ndcg_at_3
            value: 18.981
          - type: ndcg_at_5
            value: 20.349999999999998
          - type: precision_at_1
            value: 15.157000000000002
          - type: precision_at_10
            value: 3.512
          - type: precision_at_100
            value: 0.577
          - type: precision_at_1000
            value: 0.091
          - type: precision_at_3
            value: 8.01
          - type: precision_at_5
            value: 5.656
          - type: recall_at_1
            value: 14.238999999999999
          - type: recall_at_10
            value: 31.038
          - type: recall_at_100
            value: 49.122
          - type: recall_at_1000
            value: 74.919
          - type: recall_at_3
            value: 21.436
          - type: recall_at_5
            value: 24.692
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
        metrics:
          - type: map_at_1
            value: 8.828
          - type: map_at_10
            value: 14.982000000000001
          - type: map_at_100
            value: 16.495
          - type: map_at_1000
            value: 16.658
          - type: map_at_3
            value: 12.366000000000001
          - type: map_at_5
            value: 13.655000000000001
          - type: mrr_at_1
            value: 19.088
          - type: mrr_at_10
            value: 29.29
          - type: mrr_at_100
            value: 30.291
          - type: mrr_at_1000
            value: 30.342000000000002
          - type: mrr_at_3
            value: 25.907000000000004
          - type: mrr_at_5
            value: 27.840999999999998
          - type: ndcg_at_1
            value: 19.088
          - type: ndcg_at_10
            value: 21.858
          - type: ndcg_at_100
            value: 28.323999999999998
          - type: ndcg_at_1000
            value: 31.561
          - type: ndcg_at_3
            value: 17.175
          - type: ndcg_at_5
            value: 18.869
          - type: precision_at_1
            value: 19.088
          - type: precision_at_10
            value: 6.9190000000000005
          - type: precision_at_100
            value: 1.376
          - type: precision_at_1000
            value: 0.197
          - type: precision_at_3
            value: 12.703999999999999
          - type: precision_at_5
            value: 9.993
          - type: recall_at_1
            value: 8.828
          - type: recall_at_10
            value: 27.381
          - type: recall_at_100
            value: 50
          - type: recall_at_1000
            value: 68.355
          - type: recall_at_3
            value: 16.118
          - type: recall_at_5
            value: 20.587
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: f097057d03ed98220bc7309ddb10b71a54d667d6
        metrics:
          - type: map_at_1
            value: 5.586
          - type: map_at_10
            value: 10.040000000000001
          - type: map_at_100
            value: 12.55
          - type: map_at_1000
            value: 13.123999999999999
          - type: map_at_3
            value: 7.75
          - type: map_at_5
            value: 8.835999999999999
          - type: mrr_at_1
            value: 42.25
          - type: mrr_at_10
            value: 51.205999999999996
          - type: mrr_at_100
            value: 51.818
          - type: mrr_at_1000
            value: 51.855
          - type: mrr_at_3
            value: 48.875
          - type: mrr_at_5
            value: 50.488
          - type: ndcg_at_1
            value: 32.25
          - type: ndcg_at_10
            value: 22.718
          - type: ndcg_at_100
            value: 24.359
          - type: ndcg_at_1000
            value: 29.232000000000003
          - type: ndcg_at_3
            value: 25.974000000000004
          - type: ndcg_at_5
            value: 24.291999999999998
          - type: precision_at_1
            value: 42.25
          - type: precision_at_10
            value: 17.75
          - type: precision_at_100
            value: 5.032
          - type: precision_at_1000
            value: 1.117
          - type: precision_at_3
            value: 28.833
          - type: precision_at_5
            value: 24.25
          - type: recall_at_1
            value: 5.586
          - type: recall_at_10
            value: 14.16
          - type: recall_at_100
            value: 28.051
          - type: recall_at_1000
            value: 45.157000000000004
          - type: recall_at_3
            value: 8.758000000000001
          - type: recall_at_5
            value: 10.975999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 829147f8f75a25f005913200eb5ed41fae320aa1
        metrics:
          - type: accuracy
            value: 39.075
          - type: f1
            value: 35.01420354708222
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
        metrics:
          - type: map_at_1
            value: 43.519999999999996
          - type: map_at_10
            value: 54.368
          - type: map_at_100
            value: 54.918
          - type: map_at_1000
            value: 54.942
          - type: map_at_3
            value: 51.712
          - type: map_at_5
            value: 53.33599999999999
          - type: mrr_at_1
            value: 46.955000000000005
          - type: mrr_at_10
            value: 58.219
          - type: mrr_at_100
            value: 58.73500000000001
          - type: mrr_at_1000
            value: 58.753
          - type: mrr_at_3
            value: 55.518
          - type: mrr_at_5
            value: 57.191
          - type: ndcg_at_1
            value: 46.955000000000005
          - type: ndcg_at_10
            value: 60.45
          - type: ndcg_at_100
            value: 63.047
          - type: ndcg_at_1000
            value: 63.712999999999994
          - type: ndcg_at_3
            value: 55.233
          - type: ndcg_at_5
            value: 58.072
          - type: precision_at_1
            value: 46.955000000000005
          - type: precision_at_10
            value: 8.267
          - type: precision_at_100
            value: 0.962
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 22.326999999999998
          - type: precision_at_5
            value: 14.940999999999999
          - type: recall_at_1
            value: 43.519999999999996
          - type: recall_at_10
            value: 75.632
          - type: recall_at_100
            value: 87.41600000000001
          - type: recall_at_1000
            value: 92.557
          - type: recall_at_3
            value: 61.597
          - type: recall_at_5
            value: 68.518
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
        metrics:
          - type: map_at_1
            value: 9.549000000000001
          - type: map_at_10
            value: 15.762
          - type: map_at_100
            value: 17.142
          - type: map_at_1000
            value: 17.329
          - type: map_at_3
            value: 13.575000000000001
          - type: map_at_5
            value: 14.754000000000001
          - type: mrr_at_1
            value: 19.753
          - type: mrr_at_10
            value: 26.568
          - type: mrr_at_100
            value: 27.606
          - type: mrr_at_1000
            value: 27.68
          - type: mrr_at_3
            value: 24.203
          - type: mrr_at_5
            value: 25.668999999999997
          - type: ndcg_at_1
            value: 19.753
          - type: ndcg_at_10
            value: 21.118000000000002
          - type: ndcg_at_100
            value: 27.308
          - type: ndcg_at_1000
            value: 31.304
          - type: ndcg_at_3
            value: 18.319
          - type: ndcg_at_5
            value: 19.414
          - type: precision_at_1
            value: 19.753
          - type: precision_at_10
            value: 6.08
          - type: precision_at_100
            value: 1.204
          - type: precision_at_1000
            value: 0.192
          - type: precision_at_3
            value: 12.191
          - type: precision_at_5
            value: 9.383
          - type: recall_at_1
            value: 9.549000000000001
          - type: recall_at_10
            value: 26.131
          - type: recall_at_100
            value: 50.544999999999995
          - type: recall_at_1000
            value: 74.968
          - type: recall_at_3
            value: 16.951
          - type: recall_at_5
            value: 20.95
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
        metrics:
          - type: map_at_1
            value: 25.544
          - type: map_at_10
            value: 32.62
          - type: map_at_100
            value: 33.275
          - type: map_at_1000
            value: 33.344
          - type: map_at_3
            value: 30.851
          - type: map_at_5
            value: 31.868999999999996
          - type: mrr_at_1
            value: 51.087
          - type: mrr_at_10
            value: 57.704
          - type: mrr_at_100
            value: 58.175
          - type: mrr_at_1000
            value: 58.207
          - type: mrr_at_3
            value: 56.106
          - type: mrr_at_5
            value: 57.074000000000005
          - type: ndcg_at_1
            value: 51.087
          - type: ndcg_at_10
            value: 40.876000000000005
          - type: ndcg_at_100
            value: 43.762
          - type: ndcg_at_1000
            value: 45.423
          - type: ndcg_at_3
            value: 37.65
          - type: ndcg_at_5
            value: 39.305
          - type: precision_at_1
            value: 51.087
          - type: precision_at_10
            value: 8.304
          - type: precision_at_100
            value: 1.059
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 22.875999999999998
          - type: precision_at_5
            value: 15.033
          - type: recall_at_1
            value: 25.544
          - type: recall_at_10
            value: 41.519
          - type: recall_at_100
            value: 52.957
          - type: recall_at_1000
            value: 64.132
          - type: recall_at_3
            value: 34.315
          - type: recall_at_5
            value: 37.583
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
        metrics:
          - type: accuracy
            value: 58.6696
          - type: ap
            value: 55.3644880984279
          - type: f1
            value: 58.07942097405652
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: validation
          revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
        metrics:
          - type: map_at_1
            value: 14.442
          - type: map_at_10
            value: 22.932
          - type: map_at_100
            value: 24.132
          - type: map_at_1000
            value: 24.213
          - type: map_at_3
            value: 20.002
          - type: map_at_5
            value: 21.636
          - type: mrr_at_1
            value: 14.841999999999999
          - type: mrr_at_10
            value: 23.416
          - type: mrr_at_100
            value: 24.593999999999998
          - type: mrr_at_1000
            value: 24.669
          - type: mrr_at_3
            value: 20.494
          - type: mrr_at_5
            value: 22.14
          - type: ndcg_at_1
            value: 14.841999999999999
          - type: ndcg_at_10
            value: 27.975
          - type: ndcg_at_100
            value: 34.143
          - type: ndcg_at_1000
            value: 36.370000000000005
          - type: ndcg_at_3
            value: 21.944
          - type: ndcg_at_5
            value: 24.881
          - type: precision_at_1
            value: 14.841999999999999
          - type: precision_at_10
            value: 4.537
          - type: precision_at_100
            value: 0.767
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 9.322
          - type: precision_at_5
            value: 7.074
          - type: recall_at_1
            value: 14.442
          - type: recall_at_10
            value: 43.557
          - type: recall_at_100
            value: 72.904
          - type: recall_at_1000
            value: 90.40700000000001
          - type: recall_at_3
            value: 27.088
          - type: recall_at_5
            value: 34.144000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 86.95622435020519
          - type: f1
            value: 86.58363130708494
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 62.73034657650043
          - type: f1
            value: 60.78623915840713
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 67.54503002001334
          - type: f1
            value: 65.34879794116112
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 65.35233322893829
          - type: f1
            value: 62.994001882446646
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 45.37110075295806
          - type: f1
            value: 44.26285860740745
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 55.276672694394215
          - type: f1
            value: 53.28388179869587
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 62.25262197902417
          - type: f1
            value: 43.44084037148853
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 49.56043956043956
          - type: f1
            value: 32.86333673498598
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 49.93995997331555
          - type: f1
            value: 34.726671876888126
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 46.32947071719386
          - type: f1
            value: 32.325273615982795
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 32.208676945141626
          - type: f1
            value: 21.32185122815139
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 43.627486437613015
          - type: f1
            value: 27.04872922347508
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.548083389374575
          - type: f1
            value: 39.490307545239716
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 24.18291862811029
          - type: f1
            value: 23.437620034727473
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 30.134498991257562
          - type: f1
            value: 28.787175191531283
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.88433086751849
          - type: f1
            value: 36.264500398782126
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 29.17283120376597
          - type: f1
            value: 27.8101616531901
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.788836583725626
          - type: f1
            value: 39.71413181054801
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.176193678547406
          - type: f1
            value: 42.192499826552286
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.07464694014795
          - type: f1
            value: 39.44188259183162
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 36.254203093476804
          - type: f1
            value: 34.46592715936761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 61.40887693342301
          - type: f1
            value: 59.79854802683996
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.679892400807
          - type: f1
            value: 42.04801248338172
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.59179556153329
          - type: f1
            value: 34.045862930486166
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.036987222595826
          - type: f1
            value: 38.117703439362785
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 43.43981170141224
          - type: f1
            value: 42.7084388987865
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 31.593813046402154
          - type: f1
            value: 29.98550522450782
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 27.044384667114997
          - type: f1
            value: 27.313059184832667
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.453261600538
          - type: f1
            value: 37.309189326110435
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 27.979152656355076
          - type: f1
            value: 27.430939684346445
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 43.97108271687963
          - type: f1
            value: 43.40585705688761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.302622730329524
          - type: f1
            value: 39.108052180520744
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.474108944182916
          - type: f1
            value: 45.85950328241134
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.60860793544048
          - type: f1
            value: 43.94920708216737
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.668459986550104
          - type: f1
            value: 37.6990034018859
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 25.6523201075992
          - type: f1
            value: 25.279084273189582
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 28.295225285810353
          - type: f1
            value: 26.645825638771548
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 23.480161398789505
          - type: f1
            value: 22.275241866506732
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 36.55682582380632
          - type: f1
            value: 36.004753171063605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.84936112979153
          - type: f1
            value: 41.38932672359119
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 24.90921318090114
          - type: f1
            value: 23.968687483768807
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 29.86213853396099
          - type: f1
            value: 29.977152075255407
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.42098184263618
          - type: f1
            value: 41.50877432664628
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 25.131136516476126
          - type: f1
            value: 23.938932214086776
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 39.81506388702084
          - type: f1
            value: 38.809586587791664
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 43.62138533960995
          - type: f1
            value: 42.01386842914633
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.19569603227976
          - type: f1
            value: 40.00556559825827
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.20847343644923
          - type: f1
            value: 44.24115005029051
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.80901143241426
          - type: f1
            value: 40.474074848670085
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.96839273705447
          - type: f1
            value: 35.095456843621
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.60524546065905
          - type: f1
            value: 39.302383051500136
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.75722932078009
          - type: f1
            value: 41.53763931497389
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.347007397444514
          - type: f1
            value: 41.04366017948627
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.12306657700067
          - type: f1
            value: 39.712940473289024
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 24.603227975790183
          - type: f1
            value: 23.969236788828606
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 25.03698722259583
          - type: f1
            value: 24.37196123281459
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.40013449899126
          - type: f1
            value: 35.063600413688036
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.19031607262945
          - type: f1
            value: 40.240432304273014
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 36.405514458641555
          - type: f1
            value: 36.03844992856558
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 25.934767989240076
          - type: f1
            value: 25.2074457023531
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.79959650302622
          - type: f1
            value: 37.160233794673125
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 46.244115669132476
          - type: f1
            value: 44.367480561291906
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 42.30665770006724
          - type: f1
            value: 41.9642223283514
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.2481506388702
          - type: f1
            value: 40.924230769590785
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.30262273032952
          - type: f1
            value: 24.937105830264066
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.07128446536651
          - type: f1
            value: 31.80245816594883
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.681237390719566
          - type: f1
            value: 36.37219042508338
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 29.56624075319435
          - type: f1
            value: 28.386042056362758
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.1049092131809
          - type: f1
            value: 38.926150886991294
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.44384667114997
          - type: f1
            value: 42.578252395460005
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.211163416274374
          - type: f1
            value: 41.04465858304789
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.503026227303295
          - type: f1
            value: 34.49785095312759
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.73772696704773
          - type: f1
            value: 69.21759502909043
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.078681909885674
          - type: f1
            value: 43.05914426901129
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.61264290517821
          - type: f1
            value: 32.02463177462754
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.35642232683255
          - type: f1
            value: 38.13642481807678
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.06724949562878
          - type: f1
            value: 43.19827608343738
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.178883658372555
          - type: f1
            value: 29.979761884698775
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 26.903160726294555
          - type: f1
            value: 25.833010434083363
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.379959650302624
          - type: f1
            value: 37.93134355292882
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.375924680564896
          - type: f1
            value: 26.96255693013172
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.361129791526565
          - type: f1
            value: 43.54445012295126
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.290517821116346
          - type: f1
            value: 37.26982052174147
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.4694014794889
          - type: f1
            value: 44.060986162841566
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.25756556825824
          - type: f1
            value: 45.625139456758816
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.12642905178212
          - type: f1
            value: 39.54392378396527
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 24.72763954270343
          - type: f1
            value: 23.337743140804484
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 29.741089441829182
          - type: f1
            value: 27.570876190083748
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 23.850033624747816
          - type: f1
            value: 22.86733484540032
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.56691324815064
          - type: f1
            value: 35.504081677134565
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.928043039677206
          - type: f1
            value: 39.108589131211254
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.527908540685946
          - type: f1
            value: 25.333391622280477
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 29.105581708137183
          - type: f1
            value: 28.478235012692814
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.78614660390047
          - type: f1
            value: 41.9640143926267
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.269670477471415
          - type: f1
            value: 26.228386764141852
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.018157363819775
          - type: f1
            value: 37.641949339321854
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.35978480161399
          - type: f1
            value: 42.6851176096831
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.89307330195023
          - type: f1
            value: 40.888710642615024
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.901143241425686
          - type: f1
            value: 44.496942353920545
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.11566913248151
          - type: f1
            value: 41.953945105870616
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.76395427034297
          - type: f1
            value: 31.436372571600934
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.504371217215876
          - type: f1
            value: 39.322752749628165
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.51849361129792
          - type: f1
            value: 41.4139297118463
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.293207800941495
          - type: f1
            value: 40.50409536806683
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.9993275050437
          - type: f1
            value: 41.045416224973266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.32548755884331
          - type: f1
            value: 27.276841995561867
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 26.593813046402154
          - type: f1
            value: 25.483878616197586
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.788836583725626
          - type: f1
            value: 34.603932909177686
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.5689307330195
          - type: f1
            value: 40.924469309079825
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.09482178883658
          - type: f1
            value: 37.949628822857164
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.836583725622063
          - type: f1
            value: 27.806558655512344
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.357094821788834
          - type: f1
            value: 37.507918961038165
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.37794216543375
          - type: f1
            value: 47.20421153697707
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.42165433759248
          - type: f1
            value: 44.34741861198931
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: dcefc037ef84348e49b0d29109e891c01067226b
        metrics:
          - type: v_measure
            value: 31.374938993074252
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
        metrics:
          - type: v_measure
            value: 26.871455379644093
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.402396942935333
          - type: mrr
            value: 31.42600938803256
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
        metrics:
          - type: map_at_1
            value: 3.7740000000000005
          - type: map_at_10
            value: 7.614999999999999
          - type: map_at_100
            value: 9.574
          - type: map_at_1000
            value: 10.711
          - type: map_at_3
            value: 5.7540000000000004
          - type: map_at_5
            value: 6.6659999999999995
          - type: mrr_at_1
            value: 33.127
          - type: mrr_at_10
            value: 40.351
          - type: mrr_at_100
            value: 41.144
          - type: mrr_at_1000
            value: 41.202
          - type: mrr_at_3
            value: 38.029
          - type: mrr_at_5
            value: 39.190000000000005
          - type: ndcg_at_1
            value: 31.579
          - type: ndcg_at_10
            value: 22.792
          - type: ndcg_at_100
            value: 21.698999999999998
          - type: ndcg_at_1000
            value: 30.892999999999997
          - type: ndcg_at_3
            value: 26.828999999999997
          - type: ndcg_at_5
            value: 25.119000000000003
          - type: precision_at_1
            value: 33.127
          - type: precision_at_10
            value: 16.718
          - type: precision_at_100
            value: 5.7090000000000005
          - type: precision_at_1000
            value: 1.836
          - type: precision_at_3
            value: 24.768
          - type: precision_at_5
            value: 21.3
          - type: recall_at_1
            value: 3.7740000000000005
          - type: recall_at_10
            value: 10.302999999999999
          - type: recall_at_100
            value: 23.013
          - type: recall_at_1000
            value: 54.864999999999995
          - type: recall_at_3
            value: 6.554
          - type: recall_at_5
            value: 8.087
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
        metrics:
          - type: map_at_1
            value: 15.620999999999999
          - type: map_at_10
            value: 24.519
          - type: map_at_100
            value: 25.586
          - type: map_at_1000
            value: 25.662000000000003
          - type: map_at_3
            value: 21.619
          - type: map_at_5
            value: 23.232
          - type: mrr_at_1
            value: 17.497
          - type: mrr_at_10
            value: 26.301000000000002
          - type: mrr_at_100
            value: 27.235
          - type: mrr_at_1000
            value: 27.297
          - type: mrr_at_3
            value: 23.561
          - type: mrr_at_5
            value: 25.111
          - type: ndcg_at_1
            value: 17.497
          - type: ndcg_at_10
            value: 29.725
          - type: ndcg_at_100
            value: 34.824
          - type: ndcg_at_1000
            value: 36.907000000000004
          - type: ndcg_at_3
            value: 23.946
          - type: ndcg_at_5
            value: 26.739
          - type: precision_at_1
            value: 17.497
          - type: precision_at_10
            value: 5.2170000000000005
          - type: precision_at_100
            value: 0.8099999999999999
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 11.114
          - type: precision_at_5
            value: 8.285
          - type: recall_at_1
            value: 15.620999999999999
          - type: recall_at_10
            value: 43.999
          - type: recall_at_100
            value: 67.183
          - type: recall_at_1000
            value: 83.174
          - type: recall_at_3
            value: 28.720000000000002
          - type: recall_at_5
            value: 35.154
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
        metrics:
          - type: map_at_1
            value: 54.717000000000006
          - type: map_at_10
            value: 67.514
          - type: map_at_100
            value: 68.484
          - type: map_at_1000
            value: 68.523
          - type: map_at_3
            value: 64.169
          - type: map_at_5
            value: 66.054
          - type: mrr_at_1
            value: 62.46000000000001
          - type: mrr_at_10
            value: 71.503
          - type: mrr_at_100
            value: 71.91499999999999
          - type: mrr_at_1000
            value: 71.923
          - type: mrr_at_3
            value: 69.46799999999999
          - type: mrr_at_5
            value: 70.677
          - type: ndcg_at_1
            value: 62.480000000000004
          - type: ndcg_at_10
            value: 72.98
          - type: ndcg_at_100
            value: 76.023
          - type: ndcg_at_1000
            value: 76.512
          - type: ndcg_at_3
            value: 68.138
          - type: ndcg_at_5
            value: 70.458
          - type: precision_at_1
            value: 62.480000000000004
          - type: precision_at_10
            value: 11.373
          - type: precision_at_100
            value: 1.437
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 29.622999999999998
          - type: precision_at_5
            value: 19.918
          - type: recall_at_1
            value: 54.717000000000006
          - type: recall_at_10
            value: 84.745
          - type: recall_at_100
            value: 96.528
          - type: recall_at_1000
            value: 99.39
          - type: recall_at_3
            value: 71.60600000000001
          - type: recall_at_5
            value: 77.511
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: b2805658ae38990172679479369a78b86de8c390
        metrics:
          - type: v_measure
            value: 40.23390747226228
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 49.090518272935626
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
        metrics:
          - type: map_at_1
            value: 3.028
          - type: map_at_10
            value: 6.968000000000001
          - type: map_at_100
            value: 8.200000000000001
          - type: map_at_1000
            value: 8.432
          - type: map_at_3
            value: 5.3069999999999995
          - type: map_at_5
            value: 6.099
          - type: mrr_at_1
            value: 14.799999999999999
          - type: mrr_at_10
            value: 22.425
          - type: mrr_at_100
            value: 23.577
          - type: mrr_at_1000
            value: 23.669999999999998
          - type: mrr_at_3
            value: 20.233
          - type: mrr_at_5
            value: 21.318
          - type: ndcg_at_1
            value: 14.799999999999999
          - type: ndcg_at_10
            value: 12.206
          - type: ndcg_at_100
            value: 17.799
          - type: ndcg_at_1000
            value: 22.891000000000002
          - type: ndcg_at_3
            value: 12.128
          - type: ndcg_at_5
            value: 10.212
          - type: precision_at_1
            value: 14.799999999999999
          - type: precision_at_10
            value: 6.17
          - type: precision_at_100
            value: 1.428
          - type: precision_at_1000
            value: 0.266
          - type: precision_at_3
            value: 11.333
          - type: precision_at_5
            value: 8.74
          - type: recall_at_1
            value: 3.028
          - type: recall_at_10
            value: 12.522
          - type: recall_at_100
            value: 28.975
          - type: recall_at_1000
            value: 54.038
          - type: recall_at_3
            value: 6.912999999999999
          - type: recall_at_5
            value: 8.883000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 76.62983928119752
          - type: cos_sim_spearman
            value: 65.92910683118656
          - type: euclidean_pearson
            value: 71.10290039690963
          - type: euclidean_spearman
            value: 64.80076622426652
          - type: manhattan_pearson
            value: 70.8944726230188
          - type: manhattan_spearman
            value: 64.75082576033986
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
        metrics:
          - type: cos_sim_pearson
            value: 74.42679147085553
          - type: cos_sim_spearman
            value: 66.52980061546658
          - type: euclidean_pearson
            value: 74.87039477408763
          - type: euclidean_spearman
            value: 70.63397666902786
          - type: manhattan_pearson
            value: 74.97015137513088
          - type: manhattan_spearman
            value: 70.75951355434326
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
        metrics:
          - type: cos_sim_pearson
            value: 75.62472426599543
          - type: cos_sim_spearman
            value: 76.1662886374236
          - type: euclidean_pearson
            value: 76.3297128081315
          - type: euclidean_spearman
            value: 77.19385151966563
          - type: manhattan_pearson
            value: 76.50363291423257
          - type: manhattan_spearman
            value: 77.37081896355399
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
        metrics:
          - type: cos_sim_pearson
            value: 74.48227705407035
          - type: cos_sim_spearman
            value: 69.04572664009687
          - type: euclidean_pearson
            value: 71.76138185714849
          - type: euclidean_spearman
            value: 68.93415452043307
          - type: manhattan_pearson
            value: 71.68010915543306
          - type: manhattan_spearman
            value: 68.99176321262806
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
        metrics:
          - type: cos_sim_pearson
            value: 78.1566527175902
          - type: cos_sim_spearman
            value: 79.23677712825851
          - type: euclidean_pearson
            value: 76.29138438696417
          - type: euclidean_spearman
            value: 77.20108266215374
          - type: manhattan_pearson
            value: 76.27464935799118
          - type: manhattan_spearman
            value: 77.15286174478099
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
        metrics:
          - type: cos_sim_pearson
            value: 75.068454465977
          - type: cos_sim_spearman
            value: 76.06792422441929
          - type: euclidean_pearson
            value: 70.64605440627699
          - type: euclidean_spearman
            value: 70.21776051117844
          - type: manhattan_pearson
            value: 70.32479295054918
          - type: manhattan_spearman
            value: 69.89782458638528
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 39.43327289939437
          - type: cos_sim_spearman
            value: 52.386010275505654
          - type: euclidean_pearson
            value: 46.40999904885745
          - type: euclidean_spearman
            value: 51.00333465175934
          - type: manhattan_pearson
            value: 46.55753533133655
          - type: manhattan_spearman
            value: 51.07550440519388
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 55.54431928210687
          - type: cos_sim_spearman
            value: 55.61674586076298
          - type: euclidean_pearson
            value: 58.07442713714088
          - type: euclidean_spearman
            value: 55.74066216931719
          - type: manhattan_pearson
            value: 57.84021675638542
          - type: manhattan_spearman
            value: 55.20365812536853
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 11.378463868809098
          - type: cos_sim_spearman
            value: 8.209569244801065
          - type: euclidean_pearson
            value: 1.07041700730406
          - type: euclidean_spearman
            value: 2.2052197108931892
          - type: manhattan_pearson
            value: 0.7671300251104268
          - type: manhattan_spearman
            value: 3.430645020535567
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 32.71403560929013
          - type: cos_sim_spearman
            value: 30.18181775929109
          - type: euclidean_pearson
            value: 25.57368595910298
          - type: euclidean_spearman
            value: 23.316649115731376
          - type: manhattan_pearson
            value: 24.144200325329614
          - type: manhattan_spearman
            value: 21.64621546338457
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 83.36340470799158
          - type: cos_sim_spearman
            value: 84.95398260629699
          - type: euclidean_pearson
            value: 80.69876969911644
          - type: euclidean_spearman
            value: 80.97451731130427
          - type: manhattan_pearson
            value: 80.65869354146945
          - type: manhattan_spearman
            value: 80.8540858718528
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 1.9200044163754912
          - type: cos_sim_spearman
            value: 1.0393399782021342
          - type: euclidean_pearson
            value: 1.1376003191297994
          - type: euclidean_spearman
            value: 1.8947106671763914
          - type: manhattan_pearson
            value: 3.8362564474484335
          - type: manhattan_spearman
            value: 4.242750882792888
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 26.561262451099577
          - type: cos_sim_spearman
            value: 28.776666666659906
          - type: euclidean_pearson
            value: 14.640410196999088
          - type: euclidean_spearman
            value: 16.10557011701786
          - type: manhattan_pearson
            value: 15.019405495911272
          - type: manhattan_spearman
            value: 15.37192083104197
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 69.7544202001433
          - type: cos_sim_spearman
            value: 71.88444295144646
          - type: euclidean_pearson
            value: 73.84934185952773
          - type: euclidean_spearman
            value: 73.26911108021089
          - type: manhattan_pearson
            value: 74.04354196954574
          - type: manhattan_spearman
            value: 73.37650787943872
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 27.70511842301491
          - type: cos_sim_spearman
            value: 26.339466714066447
          - type: euclidean_pearson
            value: 9.323158236506385
          - type: euclidean_spearman
            value: 7.32083231520273
          - type: manhattan_pearson
            value: 7.807399527573071
          - type: manhattan_spearman
            value: 5.525546663067113
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 24.226521799447692
          - type: cos_sim_spearman
            value: 20.72992940458968
          - type: euclidean_pearson
            value: 6.753378617205011
          - type: euclidean_spearman
            value: 6.281654679029505
          - type: manhattan_pearson
            value: 7.087180250449323
          - type: manhattan_spearman
            value: 6.41611659259516
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 29.131412364061234
          - type: cos_sim_spearman
            value: 25.053429612793547
          - type: euclidean_pearson
            value: 10.657141303962
          - type: euclidean_spearman
            value: 9.712124819778452
          - type: manhattan_pearson
            value: 12.481782693315688
          - type: manhattan_spearman
            value: 11.287958480905973
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 64.04750650962879
          - type: cos_sim_spearman
            value: 65.66183708171826
          - type: euclidean_pearson
            value: 66.90887604405887
          - type: euclidean_spearman
            value: 66.89814072484552
          - type: manhattan_pearson
            value: 67.31627110509089
          - type: manhattan_spearman
            value: 67.01048176165322
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 19.26519187000913
          - type: cos_sim_spearman
            value: 21.987647321429005
          - type: euclidean_pearson
            value: 17.850618752342946
          - type: euclidean_spearman
            value: 22.86669392885474
          - type: manhattan_pearson
            value: 18.16183594260708
          - type: manhattan_spearman
            value: 23.637510352837907
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 34.221261828226936
          - type: cos_sim_spearman
            value: 49.811823238907664
          - type: euclidean_pearson
            value: 44.50394399762147
          - type: euclidean_spearman
            value: 50.959184495072876
          - type: manhattan_pearson
            value: 45.83191034038624
          - type: manhattan_spearman
            value: 50.190409866117946
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 3.620381732096531
          - type: cos_sim_spearman
            value: 23.30843951799194
          - type: euclidean_pearson
            value: 0.965453312113125
          - type: euclidean_spearman
            value: 24.235967620790316
          - type: manhattan_pearson
            value: 1.4408922275701606
          - type: manhattan_spearman
            value: 25.161920137046096
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 16.69489628726267
          - type: cos_sim_spearman
            value: 34.66348380997687
          - type: euclidean_pearson
            value: 29.415825529188606
          - type: euclidean_spearman
            value: 38.33011033170646
          - type: manhattan_pearson
            value: 31.23273195263394
          - type: manhattan_spearman
            value: 39.10055785755795
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 9.134927430889528
          - type: cos_sim_spearman
            value: 28.18922448944151
          - type: euclidean_pearson
            value: 19.86814169549051
          - type: euclidean_spearman
            value: 27.519588644948627
          - type: manhattan_pearson
            value: 21.80949221238945
          - type: manhattan_spearman
            value: 28.25217200494078
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 3.6386482942352085
          - type: cos_sim_spearman
            value: 9.068119621940966
          - type: euclidean_pearson
            value: 0.8123129118737714
          - type: euclidean_spearman
            value: 9.173672890166147
          - type: manhattan_pearson
            value: 0.754518899822658
          - type: manhattan_spearman
            value: 8.431719541986524
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 2.972091574908432
          - type: cos_sim_spearman
            value: 25.48511383289232
          - type: euclidean_pearson
            value: 12.751569670148918
          - type: euclidean_spearman
            value: 24.940721642439286
          - type: manhattan_pearson
            value: 14.310238482989826
          - type: manhattan_spearman
            value: 24.69821216148647
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 54.4745185734135
          - type: cos_sim_spearman
            value: 67.66493409568727
          - type: euclidean_pearson
            value: 60.13580336797049
          - type: euclidean_spearman
            value: 66.12319300814538
          - type: manhattan_pearson
            value: 60.816210368708155
          - type: manhattan_spearman
            value: 65.70010026716766
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 49.37865412588201
          - type: cos_sim_spearman
            value: 53.07135629778897
          - type: euclidean_pearson
            value: 49.29201416711091
          - type: euclidean_spearman
            value: 50.54523702399645
          - type: manhattan_pearson
            value: 51.265764141268534
          - type: manhattan_spearman
            value: 51.979086403193605
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 44.925652392562135
          - type: cos_sim_spearman
            value: 49.51253904767726
          - type: euclidean_pearson
            value: 48.79346518897415
          - type: euclidean_spearman
            value: 51.47957870101565
          - type: manhattan_pearson
            value: 49.51314553898044
          - type: manhattan_spearman
            value: 51.895207893189166
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 45.241690321111875
          - type: cos_sim_spearman
            value: 48.24795739512037
          - type: euclidean_pearson
            value: 49.22719494399897
          - type: euclidean_spearman
            value: 49.64102442042809
          - type: manhattan_pearson
            value: 49.497887732970256
          - type: manhattan_spearman
            value: 49.940515338096304
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 36.42138324083909
          - type: cos_sim_spearman
            value: 36.79867489417801
          - type: euclidean_pearson
            value: 27.760612942610084
          - type: euclidean_spearman
            value: 29.140966500287625
          - type: manhattan_pearson
            value: 28.456674031350115
          - type: manhattan_spearman
            value: 27.46356370924497
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 26.55350664089358
          - type: cos_sim_spearman
            value: 28.681707196975008
          - type: euclidean_pearson
            value: 12.613577889195138
          - type: euclidean_spearman
            value: 13.589493311702933
          - type: manhattan_pearson
            value: 11.640157427420958
          - type: manhattan_spearman
            value: 10.345223941212415
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 38.54682179114309
          - type: cos_sim_spearman
            value: 45.782560880405704
          - type: euclidean_pearson
            value: 46.496857002368486
          - type: euclidean_spearman
            value: 48.21270426410012
          - type: manhattan_pearson
            value: 46.871839119374044
          - type: manhattan_spearman
            value: 47.556987773851525
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 35.12956772546032
          - type: cos_sim_spearman
            value: 32.96920218281008
          - type: euclidean_pearson
            value: 34.23140384382136
          - type: euclidean_spearman
            value: 32.19303153191447
          - type: manhattan_pearson
            value: 34.189468276600635
          - type: manhattan_spearman
            value: 34.887065709732376
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 30.507667380509634
          - type: cos_sim_spearman
            value: 20.447284723752716
          - type: euclidean_pearson
            value: 29.662041381794474
          - type: euclidean_spearman
            value: 20.939990379746757
          - type: manhattan_pearson
            value: 32.5112080506328
          - type: manhattan_spearman
            value: 23.773047901712495
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 71.10820459712156
          - type: cos_sim_spearman
            value: 61.97797868009122
          - type: euclidean_pearson
            value: 60.30910689156633
          - type: euclidean_spearman
            value: 61.97797868009122
          - type: manhattan_pearson
            value: 66.3405176964038
          - type: manhattan_spearman
            value: 61.97797868009122
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: 8913289635987208e6e7c72789e4be2fe94b6abd
        metrics:
          - type: cos_sim_pearson
            value: 76.53032504460737
          - type: cos_sim_spearman
            value: 75.33716094627373
          - type: euclidean_pearson
            value: 69.64662673290599
          - type: euclidean_spearman
            value: 67.30188896368857
          - type: manhattan_pearson
            value: 69.45096082050807
          - type: manhattan_spearman
            value: 67.0718727259371
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: 56a6d0140cf6356659e2a7c1413286a774468d44
        metrics:
          - type: map
            value: 71.33941904192648
          - type: mrr
            value: 89.73766429648782
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: a75ae049398addde9b70f6b268875f5cbce99089
        metrics:
          - type: map_at_1
            value: 43.333
          - type: map_at_10
            value: 52.364
          - type: map_at_100
            value: 53.184
          - type: map_at_1000
            value: 53.234
          - type: map_at_3
            value: 49.832
          - type: map_at_5
            value: 51.244
          - type: mrr_at_1
            value: 45.333
          - type: mrr_at_10
            value: 53.455
          - type: mrr_at_100
            value: 54.191
          - type: mrr_at_1000
            value: 54.235
          - type: mrr_at_3
            value: 51.556000000000004
          - type: mrr_at_5
            value: 52.622
          - type: ndcg_at_1
            value: 45.333
          - type: ndcg_at_10
            value: 56.899
          - type: ndcg_at_100
            value: 60.702
          - type: ndcg_at_1000
            value: 62.046
          - type: ndcg_at_3
            value: 52.451
          - type: ndcg_at_5
            value: 54.534000000000006
          - type: precision_at_1
            value: 45.333
          - type: precision_at_10
            value: 7.8
          - type: precision_at_100
            value: 0.987
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 20.778
          - type: precision_at_5
            value: 13.866999999999999
          - type: recall_at_1
            value: 43.333
          - type: recall_at_10
            value: 69.69999999999999
          - type: recall_at_100
            value: 86.9
          - type: recall_at_1000
            value: 97.6
          - type: recall_at_3
            value: 57.81699999999999
          - type: recall_at_5
            value: 62.827999999999996
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
        metrics:
          - type: cos_sim_accuracy
            value: 99.7
          - type: cos_sim_ap
            value: 89.88577913120001
          - type: cos_sim_f1
            value: 84.62694041061593
          - type: cos_sim_precision
            value: 84.7542627883651
          - type: cos_sim_recall
            value: 84.5
          - type: dot_accuracy
            value: 99.24752475247524
          - type: dot_ap
            value: 56.81855467290009
          - type: dot_f1
            value: 56.084126189283936
          - type: dot_precision
            value: 56.16850551654965
          - type: dot_recall
            value: 56.00000000000001
          - type: euclidean_accuracy
            value: 99.7059405940594
          - type: euclidean_ap
            value: 90.12451226491524
          - type: euclidean_f1
            value: 84.44211629125196
          - type: euclidean_precision
            value: 88.66886688668868
          - type: euclidean_recall
            value: 80.60000000000001
          - type: manhattan_accuracy
            value: 99.7128712871287
          - type: manhattan_ap
            value: 90.67590584183216
          - type: manhattan_f1
            value: 84.85436893203884
          - type: manhattan_precision
            value: 82.45283018867924
          - type: manhattan_recall
            value: 87.4
          - type: max_accuracy
            value: 99.7128712871287
          - type: max_ap
            value: 90.67590584183216
          - type: max_f1
            value: 84.85436893203884
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
        metrics:
          - type: v_measure
            value: 52.74481093815175
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
        metrics:
          - type: v_measure
            value: 32.65999453562101
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
        metrics:
          - type: map
            value: 44.74498464555465
          - type: mrr
            value: 45.333879764026825
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
        metrics:
          - type: cos_sim_pearson
            value: 29,603788751645216
          - type: cos_sim_spearman
            value: 29.705103354786033
          - type: dot_pearson
            value: 28.07425338095399
          - type: dot_spearman
            value: 26.841406359135366
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
        metrics:
          - type: map_at_1
            value: 0.241
          - type: map_at_10
            value: 1.672
          - type: map_at_100
            value: 7.858999999999999
          - type: map_at_1000
            value: 17.616
          - type: map_at_3
            value: 0.631
          - type: map_at_5
            value: 0.968
          - type: mrr_at_1
            value: 90
          - type: mrr_at_10
            value: 92.952
          - type: mrr_at_100
            value: 93.036
          - type: mrr_at_1000
            value: 93.036
          - type: mrr_at_3
            value: 92.667
          - type: mrr_at_5
            value: 92.667
          - type: ndcg_at_1
            value: 83
          - type: ndcg_at_10
            value: 70.30199999999999
          - type: ndcg_at_100
            value: 48.149
          - type: ndcg_at_1000
            value: 40.709
          - type: ndcg_at_3
            value: 79.173
          - type: ndcg_at_5
            value: 75.347
          - type: precision_at_1
            value: 90
          - type: precision_at_10
            value: 72.6
          - type: precision_at_100
            value: 48.46
          - type: precision_at_1000
            value: 18.093999999999998
          - type: precision_at_3
            value: 84
          - type: precision_at_5
            value: 78.8
          - type: recall_at_1
            value: 0.241
          - type: recall_at_10
            value: 1.814
          - type: recall_at_100
            value: 11.141
          - type: recall_at_1000
            value: 37.708999999999996
          - type: recall_at_3
            value: 0.647
          - type: recall_at_5
            value: 1.015
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
        metrics:
          - type: map_at_1
            value: 2.782
          - type: map_at_10
            value: 9.06
          - type: map_at_100
            value: 14.571000000000002
          - type: map_at_1000
            value: 16.006999999999998
          - type: map_at_3
            value: 5.037
          - type: map_at_5
            value: 6.63
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 48.243
          - type: mrr_at_100
            value: 49.065
          - type: mrr_at_1000
            value: 49.065
          - type: mrr_at_3
            value: 44.897999999999996
          - type: mrr_at_5
            value: 46.428999999999995
          - type: ndcg_at_1
            value: 31.633
          - type: ndcg_at_10
            value: 22.972
          - type: ndcg_at_100
            value: 34.777
          - type: ndcg_at_1000
            value: 45.639
          - type: ndcg_at_3
            value: 26.398
          - type: ndcg_at_5
            value: 24.418
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 19.796
          - type: precision_at_100
            value: 7.224
          - type: precision_at_1000
            value: 1.4449999999999998
          - type: precision_at_3
            value: 26.531
          - type: precision_at_5
            value: 23.265
          - type: recall_at_1
            value: 2.782
          - type: recall_at_10
            value: 14.841
          - type: recall_at_100
            value: 44.86
          - type: recall_at_1000
            value: 78.227
          - type: recall_at_3
            value: 5.959
          - type: recall_at_5
            value: 8.969000000000001
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 62.657999999999994
          - type: ap
            value: 10.96353161716344
          - type: f1
            value: 48.294226423442645
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: 62146448f05be9e52a36b8ee9936447ea787eede
        metrics:
          - type: accuracy
            value: 52.40803621958121
          - type: f1
            value: 52.61009636022186
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
        metrics:
          - type: v_measure
            value: 32.12697126747911
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 80.69976753889253
          - type: cos_sim_ap
            value: 54.74680676121268
          - type: cos_sim_f1
            value: 53.18923998590391
          - type: cos_sim_precision
            value: 47.93563413084904
          - type: cos_sim_recall
            value: 59.73614775725594
          - type: dot_accuracy
            value: 79.3348036001669
          - type: dot_ap
            value: 48.46902128933627
          - type: dot_f1
            value: 50.480109739369006
          - type: dot_precision
            value: 42.06084051345173
          - type: dot_recall
            value: 63.113456464379944
          - type: euclidean_accuracy
            value: 79.78780473266973
          - type: euclidean_ap
            value: 50.258327255164815
          - type: euclidean_f1
            value: 49.655838666827684
          - type: euclidean_precision
            value: 45.78044978846582
          - type: euclidean_recall
            value: 54.24802110817942
          - type: manhattan_accuracy
            value: 79.76992310901831
          - type: manhattan_ap
            value: 49.89892485714363
          - type: manhattan_f1
            value: 49.330433787341185
          - type: manhattan_precision
            value: 43.56175459874672
          - type: manhattan_recall
            value: 56.86015831134564
          - type: max_accuracy
            value: 80.69976753889253
          - type: max_ap
            value: 54.74680676121268
          - type: max_f1
            value: 53.18923998590391
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 86.90573213800597
          - type: cos_sim_ap
            value: 81.05760818661524
          - type: cos_sim_f1
            value: 73.64688856729379
          - type: cos_sim_precision
            value: 69.46491946491946
          - type: cos_sim_recall
            value: 78.3646442870342
          - type: dot_accuracy
            value: 83.80680715644041
          - type: dot_ap
            value: 72.49774005947461
          - type: dot_f1
            value: 68.68460650173216
          - type: dot_precision
            value: 62.954647507858105
          - type: dot_recall
            value: 75.56205728364644
          - type: euclidean_accuracy
            value: 85.97430822369697
          - type: euclidean_ap
            value: 78.86101740829326
          - type: euclidean_f1
            value: 71.07960824663695
          - type: euclidean_precision
            value: 70.36897306270279
          - type: euclidean_recall
            value: 71.8047428395442
          - type: manhattan_accuracy
            value: 85.94132029339853
          - type: manhattan_ap
            value: 78.77876711171923
          - type: manhattan_f1
            value: 71.07869075515912
          - type: manhattan_precision
            value: 69.80697847067557
          - type: manhattan_recall
            value: 72.39759778256852
          - type: max_accuracy
            value: 86.90573213800597
          - type: max_ap
            value: 81.05760818661524
          - type: max_f1
            value: 73.64688856729379

SGPT-125M-weightedmean-msmarco-specb-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 15600 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 0.0002
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}