|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-base-zeroshot-v1.1-none |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-zeroshot-v1.1-none |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1987 |
|
- F1 Macro: 0.6760 |
|
- F1 Micro: 0.7335 |
|
- Accuracy Balanced: 0.7247 |
|
- Accuracy: 0.7335 |
|
- Precision Macro: 0.6872 |
|
- Recall Macro: 0.7247 |
|
- Precision Micro: 0.7335 |
|
- Recall Micro: 0.7335 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| |
|
| 0.2135 | 1.0 | 30790 | 0.3591 | 0.8469 | 0.8620 | 0.8432 | 0.8620 | 0.8511 | 0.8432 | 0.8620 | 0.8620 | |
|
| 0.1573 | 2.0 | 61580 | 0.3712 | 0.8517 | 0.8664 | 0.8478 | 0.8664 | 0.8562 | 0.8478 | 0.8664 | 0.8664 | |
|
| 0.1038 | 3.0 | 92370 | 0.4572 | 0.8569 | 0.8701 | 0.8556 | 0.8701 | 0.8583 | 0.8556 | 0.8701 | 0.8701 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.12.1 |
|
|