KublaiKhan1's picture
Upload folder using huggingface_hub
cc8ffc4 verified
raw
history blame
20.6 kB
try: # For debugging
from localutils.debugger import enable_debug
enable_debug()
except ImportError:
pass
import flax.linen as nn
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
import tensorflow_datasets as tfds
import tensorflow as tf
tf.config.set_visible_devices([], "GPU")
tf.config.set_visible_devices([], "TPU")
import matplotlib.pyplot as plt
from typing import Any
import os
from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainState, target_update
from utils.checkpoint import Checkpoint
from utils.pretrained_resnet import get_pretrained_embs, get_pretrained_model
from utils.fid import get_fid_network, fid_from_stats
from models.vqvae import VQVAE
from models.discriminator import Discriminator
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('save_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint", 'Save dir (if not None, save params).')
flags.DEFINE_string('load_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint.tmp" , 'Load dir (if not None, load params from here).')
flags.DEFINE_integer('seed', 0, 'Random seed.')
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 1000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 1000, 'Save interval.')
flags.DEFINE_integer('batch_size', 64, 'Total Batch size.')
flags.DEFINE_integer('max_steps', int(1_000_000), 'Number of training steps.')
model_config = ml_collections.ConfigDict({
# VQVAE
'lr': 0.0001,
'beta1': 0.0,#.5
'beta2': 0.99,#.9
'lr_warmup_steps': 2000,
'lr_decay_steps': 500_000,#They use 'lambdalr'
'filters': 128,
'num_res_blocks': 2,
'channel_multipliers': (1, 2, 4, 4),#Seems right
'embedding_dim': 4, # For FSQ, a good default is 4.
'norm_type': 'GN',
'weight_decay': 0.05,#None maybe?
'clip_gradient': 1.0,
'l2_loss_weight': 1.0,#They use L1 actually
'eps_update_rate': 0.9999,
# Quantizer
'quantizer_type': 'ae', # or 'fsq', 'kl'
# Quantizer (VQ)
'quantizer_loss_ratio': 1,
'codebook_size': 1024,
'entropy_loss_ratio': 0.1,
'entropy_loss_type': 'softmax',
'entropy_temperature': 0.01,
'commitment_cost': 0.25,
# Quantizer (FSQ)
'fsq_levels': 5, # Bins per dimension.
# Quantizer (KL)
'kl_weight': 0.000000000000000000000000000000001,#They use 1e-6 on their stuff LUL. .001 is the default
# GAN
'g_adversarial_loss_weight': 0.5,
'g_grad_penalty_cost': 10,
'perceptual_loss_weight': 0.5,
'gan_warmup_steps': 25000,
})
wandb_config = default_wandb_config()
wandb_config.update({
'project': 'vqvae',
'name': 'vqvae_{dataset_name}',
})
config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)
##############################################
## Model Definitions.
##############################################
@jax.vmap
def sigmoid_cross_entropy_with_logits(*, labels: jnp.ndarray, logits: jnp.ndarray) -> jnp.ndarray:
"""https://github.com/google-research/maskgit/blob/main/maskgit/libml/losses.py
"""
zeros = jnp.zeros_like(logits, dtype=logits.dtype)
condition = (logits >= zeros)
relu_logits = jnp.where(condition, logits, zeros)
neg_abs_logits = jnp.where(condition, -logits, logits)
return relu_logits - logits * labels + jnp.log1p(jnp.exp(neg_abs_logits))
class VQGANModel(flax.struct.PyTreeNode):
rng: Any
config: dict = flax.struct.field(pytree_node=False)
vqvae: TrainState
vqvae_eps: TrainState
discriminator: TrainState
# Train G and D.
@partial(jax.pmap, axis_name='data', in_axes=(0, 0))
def update(self, images, pmap_axis='data'):
new_rng, curr_key = jax.random.split(self.rng, 2)
resnet, resnet_params = get_pretrained_model('resnet50', 'data/resnet_pretrained.npy')
is_gan_training = 1.0 - (self.vqvae.step < self.config['gan_warmup_steps']).astype(jnp.float32)
def loss_fn(params_vqvae, params_disc):
# Reconstruct image
reconstructed_images, result_dict = self.vqvae(images, params=params_vqvae, rngs={'noise': curr_key})
print("Reconstructed images shape", reconstructed_images.shape)
print("Input images shape", images.shape)
assert reconstructed_images.shape == images.shape
# GAN loss on VQVAE output.
discriminator_fn = lambda x: self.discriminator(x, params=params_disc)
real_logit, vjp_fn = jax.vjp(discriminator_fn, images, has_aux=False)
gradient = vjp_fn(jnp.ones_like(real_logit))[0] # Gradient of discriminator output wrt. real images.
gradient = gradient.reshape((images.shape[0], -1))
gradient = jnp.asarray(gradient, jnp.float32)
penalty = jnp.sum(jnp.square(gradient), axis=-1)
penalty = jnp.mean(penalty) # Gradient penalty for training D.
fake_logit = discriminator_fn(reconstructed_images)
d_loss_real = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(real_logit), logits=real_logit).mean()
d_loss_fake = sigmoid_cross_entropy_with_logits(labels=jnp.zeros_like(fake_logit), logits=fake_logit).mean()
loss_d = d_loss_real + d_loss_fake + (penalty * self.config['g_grad_penalty_cost'])
d_loss_for_vae = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(fake_logit), logits=fake_logit).mean()
d_loss_for_vae = d_loss_for_vae * is_gan_training
real_pools, _ = get_pretrained_embs(resnet_params, resnet, images=images)
fake_pools, _ = get_pretrained_embs(resnet_params, resnet, images=reconstructed_images)
perceptual_loss = jnp.mean((real_pools - fake_pools)**2)
l2_loss = jnp.mean((reconstructed_images - images) ** 2)
quantizer_loss = result_dict['quantizer_loss'] if 'quantizer_loss' in result_dict else 0.0
if self.config['quantizer_type'] == 'kl' or self.config["quantizer_type"] == "kl_two":
quantizer_loss = quantizer_loss * self.config['kl_weight']
loss_vae = (l2_loss * FLAGS.model['l2_loss_weight']) \
+ (quantizer_loss * FLAGS.model['quantizer_loss_ratio']) \
+ (d_loss_for_vae * FLAGS.model['g_adversarial_loss_weight']) \
+ (perceptual_loss * FLAGS.model['perceptual_loss_weight'])
codebook_usage = result_dict['usage'] if 'usage' in result_dict else 0.0
return (loss_vae, loss_d), {
'loss_vae': loss_vae,
'loss_d': loss_d,
'l2_loss': l2_loss,
'd_loss_for_vae': d_loss_for_vae,
'perceptual_loss': perceptual_loss,
'quantizer_loss': quantizer_loss,
'codebook_usage': codebook_usage,
}
# This is a fancy way to do 'jax.grad' so (loss_vae, params_vqvae) and (loss_d, params_disc) are differentiated.
_, grad_fn, info = jax.vjp(loss_fn, self.vqvae.params, self.discriminator.params, has_aux=True)
vae_grads, _ = grad_fn((1., 0.))
_, d_grads = grad_fn((0., 1.))
vae_grads = jax.lax.pmean(vae_grads, axis_name=pmap_axis)
d_grads = jax.lax.pmean(d_grads, axis_name=pmap_axis)
d_grads = jax.tree_map(lambda x: x * is_gan_training, d_grads)
info = jax.lax.pmean(info, axis_name=pmap_axis)
if self.config['quantizer_type'] == 'fsq':
info['codebook_usage'] = jnp.sum(info['codebook_usage'] > 0) / info['codebook_usage'].shape[-1]
updates, new_opt_state = self.vqvae.tx.update(vae_grads, self.vqvae.opt_state, self.vqvae.params)
new_params = optax.apply_updates(self.vqvae.params, updates)
new_vqvae = self.vqvae.replace(step=self.vqvae.step + 1, params=new_params, opt_state=new_opt_state)
updates, new_opt_state = self.discriminator.tx.update(d_grads, self.discriminator.opt_state, self.discriminator.params)
new_params = optax.apply_updates(self.discriminator.params, updates)
new_discriminator = self.discriminator.replace(step=self.discriminator.step + 1, params=new_params, opt_state=new_opt_state)
info['grad_norm_vae'] = optax.global_norm(vae_grads)
info['grad_norm_d'] = optax.global_norm(d_grads)
info['update_norm'] = optax.global_norm(updates)
info['param_norm'] = optax.global_norm(new_params)
info['is_gan_training'] = is_gan_training
new_vqvae_eps = target_update(new_vqvae, self.vqvae_eps, 1-self.config['eps_update_rate'])
new_model = self.replace(rng=new_rng, vqvae=new_vqvae, vqvae_eps=new_vqvae_eps, discriminator=new_discriminator)
return new_model, info
@partial(jax.pmap, axis_name='data', in_axes=(0, 0))
def reconstruction(self, images, pmap_axis='data'):
reconstructed_images, _ = self.vqvae_eps(images)
reconstructed_images = jnp.clip(reconstructed_images, 0, 1)
return reconstructed_images
##############################################
## Training Code.
##############################################
def main(_):
np.random.seed(FLAGS.seed)
print("Using devices", jax.local_devices())
device_count = len(jax.local_devices())
global_device_count = jax.device_count()
local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
print("Device count", device_count)
print("Global device count", global_device_count)
print("Global Batch: ", FLAGS.batch_size)
print("Node Batch: ", local_batch_size)
print("Device Batch:", local_batch_size // device_count)
# Create wandb logger
if jax.process_index() == 0:
setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)
def get_dataset(is_train):
if 'imagenet' in FLAGS.dataset_name:
def deserialization_fn(data):
image = data['image']
min_side = tf.minimum(tf.shape(image)[0], tf.shape(image)[1])
image = tf.image.resize_with_crop_or_pad(image, min_side, min_side)
if 'imagenet256' in FLAGS.dataset_name:
image = tf.image.resize(image, (256, 256))
elif 'imagenet128' in FLAGS.dataset_name:
image = tf.image.resize(image, (128, 128))
else:
raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
if is_train:
image = tf.image.random_flip_left_right(image)
image = tf.cast(image, tf.float32) / 255.0
return image
split = tfds.split_for_jax_process('train' if is_train else 'validation', drop_remainder=True)
print(split)
dataset = tfds.load('imagenet2012', split=split, data_dir = "/dev/shm")
dataset = dataset.map(deserialization_fn, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.shuffle(10000, seed=42, reshuffle_each_iteration=True)
dataset = dataset.repeat()
dataset = dataset.batch(local_batch_size)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
dataset = tfds.as_numpy(dataset)
dataset = iter(dataset)
return dataset
else:
raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
dataset = get_dataset(is_train=True)
dataset_valid = get_dataset(is_train=False)
example_obs = next(dataset)[:1]
get_fid_activations = get_fid_network()
if not os.path.exists('./data/imagenet256_fidstats_openai.npz'):
raise ValueError("Please download the FID stats file! See the README.")
# truth_fid_stats = np.load('data/imagenet256_fidstats_openai.npz')
truth_fid_stats = np.load("./base_stats.npz")
rng = jax.random.PRNGKey(FLAGS.seed)
rng, param_key = jax.random.split(rng)
print("Total Memory on device:", float(jax.local_devices()[0].memory_stats()['bytes_limit']) / 1024**3, "GB")
###################################
# Creating Model and put on devices.
###################################
FLAGS.model.image_channels = example_obs.shape[-1]
FLAGS.model.image_size = example_obs.shape[1]
vqvae_def = VQVAE(FLAGS.model, train=True)
vqvae_params = vqvae_def.init({'params': param_key, 'noise': param_key}, example_obs)['params']
tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
vqvae_ts = TrainState.create(vqvae_def, vqvae_params, tx=tx)
vqvae_def_eps = VQVAE(FLAGS.model, train=False)
vqvae_eps_ts = TrainState.create(vqvae_def_eps, vqvae_params)
print("Total num of VQVAE parameters:", sum(x.size for x in jax.tree_util.tree_leaves(vqvae_params)))
discriminator_def = Discriminator(FLAGS.model)
discriminator_params = discriminator_def.init(param_key, example_obs)['params']
tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
discriminator_ts = TrainState.create(discriminator_def, discriminator_params, tx=tx)
print("Total num of Discriminator parameters:", sum(x.size for x in jax.tree_util.tree_leaves(discriminator_params)))
model = VQGANModel(rng=rng, vqvae=vqvae_ts, vqvae_eps=vqvae_eps_ts, discriminator=discriminator_ts, config=FLAGS.model)
if FLAGS.load_dir is not None:
try:
cp = Checkpoint(FLAGS.load_dir)
model = cp.load_model(model)
print("Loaded model with step", model.vqvae.step)
except:
print("Random init")
else:
print("Random init")
model = flax.jax_utils.replicate(model, devices=jax.local_devices())
jax.debug.visualize_array_sharding(model.vqvae.params['decoder']['Conv_0']['bias'])
###################################
# Train Loop
###################################
best_fid = 100000
for i in tqdm.tqdm(range(1, FLAGS.max_steps + 1),
smoothing=0.1,
dynamic_ncols=True):
batch_images = next(dataset)
batch_images = batch_images.reshape((len(jax.local_devices()), -1, *batch_images.shape[1:])) # [devices, batch//devices, etc..]
model, update_info = model.update(batch_images)
if i % FLAGS.log_interval == 0:
update_info = jax.tree_map(lambda x: x.mean(), update_info)
train_metrics = {f'training/{k}': v for k, v in update_info.items()}
if jax.process_index() == 0:
wandb.log(train_metrics, step=i)
if i % FLAGS.eval_interval == 0:
# Print some images
reconstructed_images = model.reconstruction(batch_images) # [devices, 8, 256, 256, 3]
valid_images = next(dataset_valid)
valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]
if jax.process_index() == 0:
wandb.log({'batch_image_mean': batch_images.mean()}, step=i)
wandb.log({'reconstructed_images_mean': reconstructed_images.mean()}, step=i)
wandb.log({'batch_image_std': batch_images.std()}, step=i)
wandb.log({'reconstructed_images_std': reconstructed_images.std()}, step=i)
# plot comparison witah matplotlib. put each reconstruction side by side.
fig, axs = plt.subplots(2, 8, figsize=(30, 15))
#print("batch shape", batch_images.shape)#batch shape (4, 32, 256, 256, 3) #THE FIRST SHAPE IS DEVICES
#print("recon shape", reconstructed_images.shape)#it's all the same lol
#print("valid shape", valid_images.shape)
#it seems to be made for 8 device, aka tpuv3 instead
for j in range(4):#fuck it
axs[0, j].imshow(batch_images[j, 0], vmin=0, vmax=1)
axs[1, j].imshow(reconstructed_images[j, 0], vmin=0, vmax=1)
wandb.log({'reconstruction': wandb.Image(fig)}, step=i)
plt.close(fig)
fig, axs = plt.subplots(2, 8, figsize=(30, 15))
for j in range(4):
axs[0, j].imshow(valid_images[j, 0], vmin=0, vmax=1)
axs[1, j].imshow(valid_reconstructed_images[j, 0], vmin=0, vmax=1)
wandb.log({'reconstruction_valid': wandb.Image(fig)}, step=i)
plt.close(fig)
# Validation Losses
_, valid_update_info = model.update(valid_images)
valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
valid_metrics = {f'validation/{k}': v for k, v in valid_update_info.items()}
if jax.process_index() == 0:
wandb.log(valid_metrics, step=i)
# FID measurement.
activations = []
activations2 = []
for _ in range(780):#This is apprximately 40k
valid_images = next(dataset_valid)
valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]
valid_reconstructed_images = jax.image.resize(valid_reconstructed_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
method='bilinear', antialias=False)
valid_reconstructed_images = 2 * valid_reconstructed_images - 1
activations += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]
#Only needed when we save
#valid_reconstructed_images = jax.image.resize(valid_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
#method='bilinear', antialias=False)
#valid_reconstructed_images = 2 * valid_reconstructed_images - 1
#activations2 += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]
# TODO: use all_gather to get activations from all devices.
#This seems to be FID with only 64 images?
activations = np.concatenate(activations, axis=0)
activations = activations.reshape((-1, activations.shape[-1]))
# activations2 = np.concatenate(activations2, axis = 0)
# activations2 = activations2.reshape((-1, activations2.shape[-1]))
print("doing this much FID", activations.shape)#8192, 2048 should be 2048 items then I guess
mu1 = np.mean(activations, axis=0)
sigma1 = np.cov(activations, rowvar=False)
fid = fid_from_stats(mu1, sigma1, truth_fid_stats['mu'], truth_fid_stats['sigma'])
# mu2 = np.mean(activations2, axis = 0)
# sigma2 = np.cov(activations2, rowvar = False)
#save mu2 and sigma2
#And then exit for now
# np.savez("base.npz", mu = mu2, sigma = sigma2)
# exit()
#Used with loading base
#fid = fid_from_stats(mu1, sigma1, mu2, sigma2)
if jax.process_index() == 0:
wandb.log({'validation/fid': fid}, step=i)
print("validation FID at step", i, fid)
#Then if fid is smaller than previous best FID, save new FID
if fid < best_fid:
model_single = flax.jax_utils.unreplicate(model)
cp = Checkpoint(FLAGS.save_dir + "best.tmp")
cp.set_model(model_single)
cp.save()
best_fid = fid
if (i % FLAGS.save_interval == 0) and (FLAGS.save_dir is not None):
if jax.process_index() == 0:
model_single = flax.jax_utils.unreplicate(model)
cp = Checkpoint(FLAGS.save_dir)
cp.set_model(model_single)
cp.save()
if __name__ == '__main__':
app.run(main)