File size: 20,560 Bytes
cc8ffc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
try: # For debugging
    from localutils.debugger import enable_debug
    enable_debug()
except ImportError:
    pass

import flax.linen as nn
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
import tensorflow_datasets as tfds
import tensorflow as tf
tf.config.set_visible_devices([], "GPU")
tf.config.set_visible_devices([], "TPU")
import matplotlib.pyplot as plt
from typing import Any
import os

from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainState, target_update
from utils.checkpoint import Checkpoint
from utils.pretrained_resnet import get_pretrained_embs, get_pretrained_model
from utils.fid import get_fid_network, fid_from_stats
from models.vqvae import VQVAE
from models.discriminator import Discriminator

FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('save_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint", 'Save dir (if not None, save params).')
flags.DEFINE_string('load_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint.tmp" , 'Load dir (if not None, load params from here).')
flags.DEFINE_integer('seed', 0, 'Random seed.')
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 1000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 1000, 'Save interval.')
flags.DEFINE_integer('batch_size', 64, 'Total Batch size.')
flags.DEFINE_integer('max_steps', int(1_000_000), 'Number of training steps.')

model_config = ml_collections.ConfigDict({
    # VQVAE
    'lr': 0.0001,
    'beta1': 0.0,#.5
    'beta2': 0.99,#.9
    'lr_warmup_steps': 2000,
    'lr_decay_steps': 500_000,#They use 'lambdalr'
    'filters': 128,
    'num_res_blocks': 2,
    'channel_multipliers': (1, 2, 4, 4),#Seems right
    'embedding_dim': 4, # For FSQ, a good default is 4.
    'norm_type': 'GN',
    'weight_decay': 0.05,#None maybe?
    'clip_gradient': 1.0,
    'l2_loss_weight': 1.0,#They use L1 actually
    'eps_update_rate': 0.9999,
    # Quantizer
    'quantizer_type': 'ae', # or 'fsq', 'kl'
    # Quantizer (VQ)
    'quantizer_loss_ratio': 1,
    'codebook_size': 1024,
    'entropy_loss_ratio': 0.1,
    'entropy_loss_type': 'softmax',
    'entropy_temperature': 0.01,
    'commitment_cost': 0.25,
    # Quantizer (FSQ)
    'fsq_levels': 5, # Bins per dimension.
    # Quantizer (KL)
    'kl_weight': 0.000000000000000000000000000000001,#They use 1e-6 on their stuff LUL. .001 is the default
    # GAN
    'g_adversarial_loss_weight': 0.5,
    'g_grad_penalty_cost': 10,
    'perceptual_loss_weight': 0.5,
    'gan_warmup_steps': 25000,
})

wandb_config = default_wandb_config()
wandb_config.update({
    'project': 'vqvae',
    'name': 'vqvae_{dataset_name}',
})

config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)

##############################################
## Model Definitions.
##############################################

@jax.vmap
def sigmoid_cross_entropy_with_logits(*, labels: jnp.ndarray, logits: jnp.ndarray) -> jnp.ndarray:
    """https://github.com/google-research/maskgit/blob/main/maskgit/libml/losses.py
    """
    zeros = jnp.zeros_like(logits, dtype=logits.dtype)
    condition = (logits >= zeros)
    relu_logits = jnp.where(condition, logits, zeros)
    neg_abs_logits = jnp.where(condition, -logits, logits)
    return relu_logits - logits * labels + jnp.log1p(jnp.exp(neg_abs_logits))

class VQGANModel(flax.struct.PyTreeNode):
    rng: Any
    config: dict = flax.struct.field(pytree_node=False)
    vqvae: TrainState
    vqvae_eps: TrainState
    discriminator: TrainState

    # Train G and D.
    @partial(jax.pmap, axis_name='data', in_axes=(0, 0))
    def update(self, images, pmap_axis='data'):
        new_rng, curr_key = jax.random.split(self.rng, 2)

        resnet, resnet_params = get_pretrained_model('resnet50', 'data/resnet_pretrained.npy')

        is_gan_training = 1.0 - (self.vqvae.step < self.config['gan_warmup_steps']).astype(jnp.float32)

        def loss_fn(params_vqvae, params_disc):
            # Reconstruct image
            reconstructed_images, result_dict = self.vqvae(images, params=params_vqvae, rngs={'noise': curr_key})
            print("Reconstructed images shape", reconstructed_images.shape)
            print("Input images shape", images.shape)
            assert reconstructed_images.shape == images.shape

            # GAN loss on VQVAE output.
            discriminator_fn = lambda x: self.discriminator(x, params=params_disc)
            real_logit, vjp_fn = jax.vjp(discriminator_fn, images, has_aux=False)
            gradient = vjp_fn(jnp.ones_like(real_logit))[0] # Gradient of discriminator output wrt. real images.
            gradient = gradient.reshape((images.shape[0], -1))
            gradient = jnp.asarray(gradient, jnp.float32)
            penalty = jnp.sum(jnp.square(gradient), axis=-1)
            penalty = jnp.mean(penalty) # Gradient penalty for training D.
            fake_logit = discriminator_fn(reconstructed_images)
            d_loss_real = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(real_logit), logits=real_logit).mean()
            d_loss_fake = sigmoid_cross_entropy_with_logits(labels=jnp.zeros_like(fake_logit), logits=fake_logit).mean()
            loss_d = d_loss_real + d_loss_fake + (penalty * self.config['g_grad_penalty_cost'])

            d_loss_for_vae = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(fake_logit), logits=fake_logit).mean()
            d_loss_for_vae = d_loss_for_vae * is_gan_training

            real_pools, _ = get_pretrained_embs(resnet_params, resnet, images=images)
            fake_pools, _ = get_pretrained_embs(resnet_params, resnet, images=reconstructed_images)
            perceptual_loss = jnp.mean((real_pools - fake_pools)**2)

            l2_loss = jnp.mean((reconstructed_images - images) ** 2)
            quantizer_loss = result_dict['quantizer_loss'] if 'quantizer_loss' in result_dict else 0.0
            if self.config['quantizer_type'] == 'kl' or self.config["quantizer_type"] == "kl_two":
                quantizer_loss = quantizer_loss * self.config['kl_weight']
            loss_vae = (l2_loss * FLAGS.model['l2_loss_weight']) \
                + (quantizer_loss * FLAGS.model['quantizer_loss_ratio']) \
                + (d_loss_for_vae * FLAGS.model['g_adversarial_loss_weight']) \
                + (perceptual_loss * FLAGS.model['perceptual_loss_weight'])
            codebook_usage = result_dict['usage'] if 'usage' in result_dict else 0.0
            return (loss_vae, loss_d), {
                'loss_vae': loss_vae,
                'loss_d': loss_d,
                'l2_loss': l2_loss,
                'd_loss_for_vae': d_loss_for_vae,
                'perceptual_loss': perceptual_loss,
                'quantizer_loss': quantizer_loss,
                'codebook_usage': codebook_usage,
            }
        
        # This is a fancy way to do 'jax.grad' so (loss_vae, params_vqvae) and (loss_d, params_disc) are differentiated.
        _, grad_fn, info = jax.vjp(loss_fn, self.vqvae.params, self.discriminator.params, has_aux=True)
        vae_grads, _ = grad_fn((1., 0.))
        _, d_grads = grad_fn((0., 1.))

        vae_grads = jax.lax.pmean(vae_grads, axis_name=pmap_axis)
        d_grads = jax.lax.pmean(d_grads, axis_name=pmap_axis)
        d_grads = jax.tree_map(lambda x: x * is_gan_training, d_grads)

        info = jax.lax.pmean(info, axis_name=pmap_axis)
        if self.config['quantizer_type'] == 'fsq':
            info['codebook_usage'] = jnp.sum(info['codebook_usage'] > 0) / info['codebook_usage'].shape[-1]

        updates, new_opt_state = self.vqvae.tx.update(vae_grads, self.vqvae.opt_state, self.vqvae.params)
        new_params = optax.apply_updates(self.vqvae.params, updates)
        new_vqvae = self.vqvae.replace(step=self.vqvae.step + 1, params=new_params, opt_state=new_opt_state)

        updates, new_opt_state = self.discriminator.tx.update(d_grads, self.discriminator.opt_state, self.discriminator.params)
        new_params = optax.apply_updates(self.discriminator.params, updates)
        new_discriminator = self.discriminator.replace(step=self.discriminator.step + 1, params=new_params, opt_state=new_opt_state)

        info['grad_norm_vae'] = optax.global_norm(vae_grads)
        info['grad_norm_d'] = optax.global_norm(d_grads)
        info['update_norm'] = optax.global_norm(updates)
        info['param_norm'] = optax.global_norm(new_params)
        info['is_gan_training'] = is_gan_training

        new_vqvae_eps = target_update(new_vqvae, self.vqvae_eps, 1-self.config['eps_update_rate'])

        new_model = self.replace(rng=new_rng, vqvae=new_vqvae, vqvae_eps=new_vqvae_eps, discriminator=new_discriminator)
        return new_model, info
    
    @partial(jax.pmap, axis_name='data', in_axes=(0, 0))
    def reconstruction(self, images, pmap_axis='data'):
        reconstructed_images, _ = self.vqvae_eps(images)
        reconstructed_images = jnp.clip(reconstructed_images, 0, 1)
        return reconstructed_images

##############################################
## Training Code.
##############################################
def main(_):
    np.random.seed(FLAGS.seed)
    print("Using devices", jax.local_devices())
    device_count = len(jax.local_devices())
    global_device_count = jax.device_count()
    local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
    print("Device count", device_count)
    print("Global device count", global_device_count)
    print("Global Batch: ", FLAGS.batch_size)
    print("Node Batch: ", local_batch_size)
    print("Device Batch:", local_batch_size // device_count)

    # Create wandb logger
    if jax.process_index() == 0:
        setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)

    def get_dataset(is_train):
        if 'imagenet' in FLAGS.dataset_name:
            def deserialization_fn(data):
                image = data['image']
                min_side = tf.minimum(tf.shape(image)[0], tf.shape(image)[1])
                image = tf.image.resize_with_crop_or_pad(image, min_side, min_side)
                if 'imagenet256' in FLAGS.dataset_name:
                    image = tf.image.resize(image, (256, 256))
                elif 'imagenet128' in FLAGS.dataset_name:
                    image = tf.image.resize(image, (128, 128))
                else:
                    raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
                if is_train:
                    image = tf.image.random_flip_left_right(image)
                image = tf.cast(image, tf.float32) / 255.0
                return image

            
            split = tfds.split_for_jax_process('train' if is_train else 'validation', drop_remainder=True)
            print(split)
            dataset = tfds.load('imagenet2012', split=split, data_dir = "/dev/shm")
            dataset = dataset.map(deserialization_fn, num_parallel_calls=tf.data.AUTOTUNE)
            dataset = dataset.shuffle(10000, seed=42, reshuffle_each_iteration=True)
            dataset = dataset.repeat()
            dataset = dataset.batch(local_batch_size)
            dataset = dataset.prefetch(tf.data.AUTOTUNE)
            dataset = tfds.as_numpy(dataset)
            dataset = iter(dataset)
            return dataset
        else:
            raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
        
    dataset = get_dataset(is_train=True)
    dataset_valid = get_dataset(is_train=False)
    example_obs = next(dataset)[:1]

    get_fid_activations = get_fid_network()
    if not os.path.exists('./data/imagenet256_fidstats_openai.npz'):
        raise ValueError("Please download the FID stats file! See the README.")
#    truth_fid_stats = np.load('data/imagenet256_fidstats_openai.npz')
    truth_fid_stats = np.load("./base_stats.npz")

    rng = jax.random.PRNGKey(FLAGS.seed)
    rng, param_key = jax.random.split(rng)
    print("Total Memory on device:", float(jax.local_devices()[0].memory_stats()['bytes_limit']) / 1024**3, "GB")

    ###################################
    # Creating Model and put on devices.
    ###################################
    FLAGS.model.image_channels = example_obs.shape[-1]
    FLAGS.model.image_size = example_obs.shape[1]
    vqvae_def = VQVAE(FLAGS.model, train=True)
    vqvae_params = vqvae_def.init({'params': param_key, 'noise': param_key}, example_obs)['params']
    tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
    vqvae_ts = TrainState.create(vqvae_def, vqvae_params, tx=tx)
    vqvae_def_eps = VQVAE(FLAGS.model, train=False)
    vqvae_eps_ts = TrainState.create(vqvae_def_eps, vqvae_params)
    print("Total num of VQVAE parameters:", sum(x.size for x in jax.tree_util.tree_leaves(vqvae_params)))

    discriminator_def = Discriminator(FLAGS.model)
    discriminator_params = discriminator_def.init(param_key, example_obs)['params']
    tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
    discriminator_ts = TrainState.create(discriminator_def, discriminator_params, tx=tx)
    print("Total num of Discriminator parameters:", sum(x.size for x in jax.tree_util.tree_leaves(discriminator_params)))

    model = VQGANModel(rng=rng, vqvae=vqvae_ts, vqvae_eps=vqvae_eps_ts, discriminator=discriminator_ts, config=FLAGS.model)

    if FLAGS.load_dir is not None:
        try:
            cp = Checkpoint(FLAGS.load_dir)
            model = cp.load_model(model)
            print("Loaded model with step", model.vqvae.step)
        except:
            print("Random init")
    else:
        print("Random init")

    model = flax.jax_utils.replicate(model, devices=jax.local_devices())
    jax.debug.visualize_array_sharding(model.vqvae.params['decoder']['Conv_0']['bias'])

    ###################################
    # Train Loop
    ###################################
    
    best_fid = 100000

    for i in tqdm.tqdm(range(1, FLAGS.max_steps + 1),
                       smoothing=0.1,
                       dynamic_ncols=True):

        batch_images = next(dataset)
        batch_images = batch_images.reshape((len(jax.local_devices()), -1, *batch_images.shape[1:])) # [devices, batch//devices, etc..]

        model, update_info = model.update(batch_images)

        if i % FLAGS.log_interval == 0:
            update_info = jax.tree_map(lambda x: x.mean(), update_info)
            train_metrics = {f'training/{k}': v for k, v in update_info.items()}
            if jax.process_index() == 0:
                wandb.log(train_metrics, step=i)

        if i % FLAGS.eval_interval == 0:
            # Print some images
            reconstructed_images = model.reconstruction(batch_images) # [devices, 8, 256, 256, 3]
            valid_images = next(dataset_valid)
            valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
            valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]

            if jax.process_index() == 0:
                wandb.log({'batch_image_mean': batch_images.mean()}, step=i)
                wandb.log({'reconstructed_images_mean': reconstructed_images.mean()}, step=i)
                wandb.log({'batch_image_std': batch_images.std()}, step=i)
                wandb.log({'reconstructed_images_std': reconstructed_images.std()}, step=i)

                # plot comparison witah matplotlib. put each reconstruction side by side.
                fig, axs = plt.subplots(2, 8, figsize=(30, 15))
                #print("batch shape", batch_images.shape)#batch shape (4, 32, 256, 256, 3) #THE FIRST SHAPE IS DEVICES
                #print("recon shape", reconstructed_images.shape)#it's all the same lol
                #print("valid shape", valid_images.shape)
                #it seems to be made for 8 device, aka tpuv3 instead
                for j in range(4):#fuck it
                    axs[0, j].imshow(batch_images[j, 0], vmin=0, vmax=1)
                    axs[1, j].imshow(reconstructed_images[j, 0], vmin=0, vmax=1)
                wandb.log({'reconstruction': wandb.Image(fig)}, step=i)
                plt.close(fig)
                fig, axs = plt.subplots(2, 8, figsize=(30, 15))
                for j in range(4):
                    axs[0, j].imshow(valid_images[j, 0], vmin=0, vmax=1)
                    axs[1, j].imshow(valid_reconstructed_images[j, 0], vmin=0, vmax=1)
                wandb.log({'reconstruction_valid': wandb.Image(fig)}, step=i)
                plt.close(fig)

            # Validation Losses
            _, valid_update_info = model.update(valid_images)
            valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
            valid_metrics = {f'validation/{k}': v for k, v in valid_update_info.items()}
            if jax.process_index() == 0:
                wandb.log(valid_metrics, step=i)

            # FID measurement.
            activations = []
            activations2 = []
            for _ in range(780):#This is apprximately 40k
                valid_images = next(dataset_valid)
                valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
                valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]

                valid_reconstructed_images = jax.image.resize(valid_reconstructed_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
                                                               method='bilinear', antialias=False)
                valid_reconstructed_images = 2 * valid_reconstructed_images - 1
                activations += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]

                
                #Only needed when we save
                #valid_reconstructed_images = jax.image.resize(valid_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
                                                               #method='bilinear', antialias=False)
                #valid_reconstructed_images = 2 * valid_reconstructed_images - 1
                #activations2 += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]


                # TODO: use all_gather to get activations from all devices.
            #This seems to be FID with only 64 images?
            activations = np.concatenate(activations, axis=0)
            activations = activations.reshape((-1, activations.shape[-1]))

 #           activations2 = np.concatenate(activations2, axis = 0)
 #           activations2 = activations2.reshape((-1, activations2.shape[-1]))

            print("doing this much FID", activations.shape)#8192, 2048 should be 2048 items then I guess
            mu1 = np.mean(activations, axis=0)
            sigma1 = np.cov(activations, rowvar=False)
            fid = fid_from_stats(mu1, sigma1, truth_fid_stats['mu'], truth_fid_stats['sigma'])
            
#            mu2 = np.mean(activations2, axis = 0)
#            sigma2 = np.cov(activations2, rowvar = False)

            #save mu2 and sigma2
            #And then exit for now
#            np.savez("base.npz", mu = mu2, sigma = sigma2)
#            exit()

            #Used with loading base
            #fid = fid_from_stats(mu1, sigma1, mu2, sigma2)

            if jax.process_index() == 0:
                wandb.log({'validation/fid': fid}, step=i)
                print("validation FID at step", i, fid)
                #Then if fid is smaller than previous best FID, save new FID
                if fid < best_fid:
                    model_single = flax.jax_utils.unreplicate(model)
                    cp = Checkpoint(FLAGS.save_dir + "best.tmp")
                    cp.set_model(model_single)
                    cp.save()
                    best_fid = fid

        if (i % FLAGS.save_interval == 0) and (FLAGS.save_dir is not None):
            if jax.process_index() == 0:
                model_single = flax.jax_utils.unreplicate(model)
                cp = Checkpoint(FLAGS.save_dir)
                cp.set_model(model_single)
                cp.save()

if __name__ == '__main__':
    app.run(main)