File size: 20,560 Bytes
cc8ffc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
try: # For debugging
from localutils.debugger import enable_debug
enable_debug()
except ImportError:
pass
import flax.linen as nn
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
import tensorflow_datasets as tfds
import tensorflow as tf
tf.config.set_visible_devices([], "GPU")
tf.config.set_visible_devices([], "TPU")
import matplotlib.pyplot as plt
from typing import Any
import os
from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainState, target_update
from utils.checkpoint import Checkpoint
from utils.pretrained_resnet import get_pretrained_embs, get_pretrained_model
from utils.fid import get_fid_network, fid_from_stats
from models.vqvae import VQVAE
from models.discriminator import Discriminator
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('save_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint", 'Save dir (if not None, save params).')
flags.DEFINE_string('load_dir', "/home/lambda/jax-vqvae-vqgan/chkpts/checkpoint.tmp" , 'Load dir (if not None, load params from here).')
flags.DEFINE_integer('seed', 0, 'Random seed.')
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 1000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 1000, 'Save interval.')
flags.DEFINE_integer('batch_size', 64, 'Total Batch size.')
flags.DEFINE_integer('max_steps', int(1_000_000), 'Number of training steps.')
model_config = ml_collections.ConfigDict({
# VQVAE
'lr': 0.0001,
'beta1': 0.0,#.5
'beta2': 0.99,#.9
'lr_warmup_steps': 2000,
'lr_decay_steps': 500_000,#They use 'lambdalr'
'filters': 128,
'num_res_blocks': 2,
'channel_multipliers': (1, 2, 4, 4),#Seems right
'embedding_dim': 4, # For FSQ, a good default is 4.
'norm_type': 'GN',
'weight_decay': 0.05,#None maybe?
'clip_gradient': 1.0,
'l2_loss_weight': 1.0,#They use L1 actually
'eps_update_rate': 0.9999,
# Quantizer
'quantizer_type': 'ae', # or 'fsq', 'kl'
# Quantizer (VQ)
'quantizer_loss_ratio': 1,
'codebook_size': 1024,
'entropy_loss_ratio': 0.1,
'entropy_loss_type': 'softmax',
'entropy_temperature': 0.01,
'commitment_cost': 0.25,
# Quantizer (FSQ)
'fsq_levels': 5, # Bins per dimension.
# Quantizer (KL)
'kl_weight': 0.000000000000000000000000000000001,#They use 1e-6 on their stuff LUL. .001 is the default
# GAN
'g_adversarial_loss_weight': 0.5,
'g_grad_penalty_cost': 10,
'perceptual_loss_weight': 0.5,
'gan_warmup_steps': 25000,
})
wandb_config = default_wandb_config()
wandb_config.update({
'project': 'vqvae',
'name': 'vqvae_{dataset_name}',
})
config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)
##############################################
## Model Definitions.
##############################################
@jax.vmap
def sigmoid_cross_entropy_with_logits(*, labels: jnp.ndarray, logits: jnp.ndarray) -> jnp.ndarray:
"""https://github.com/google-research/maskgit/blob/main/maskgit/libml/losses.py
"""
zeros = jnp.zeros_like(logits, dtype=logits.dtype)
condition = (logits >= zeros)
relu_logits = jnp.where(condition, logits, zeros)
neg_abs_logits = jnp.where(condition, -logits, logits)
return relu_logits - logits * labels + jnp.log1p(jnp.exp(neg_abs_logits))
class VQGANModel(flax.struct.PyTreeNode):
rng: Any
config: dict = flax.struct.field(pytree_node=False)
vqvae: TrainState
vqvae_eps: TrainState
discriminator: TrainState
# Train G and D.
@partial(jax.pmap, axis_name='data', in_axes=(0, 0))
def update(self, images, pmap_axis='data'):
new_rng, curr_key = jax.random.split(self.rng, 2)
resnet, resnet_params = get_pretrained_model('resnet50', 'data/resnet_pretrained.npy')
is_gan_training = 1.0 - (self.vqvae.step < self.config['gan_warmup_steps']).astype(jnp.float32)
def loss_fn(params_vqvae, params_disc):
# Reconstruct image
reconstructed_images, result_dict = self.vqvae(images, params=params_vqvae, rngs={'noise': curr_key})
print("Reconstructed images shape", reconstructed_images.shape)
print("Input images shape", images.shape)
assert reconstructed_images.shape == images.shape
# GAN loss on VQVAE output.
discriminator_fn = lambda x: self.discriminator(x, params=params_disc)
real_logit, vjp_fn = jax.vjp(discriminator_fn, images, has_aux=False)
gradient = vjp_fn(jnp.ones_like(real_logit))[0] # Gradient of discriminator output wrt. real images.
gradient = gradient.reshape((images.shape[0], -1))
gradient = jnp.asarray(gradient, jnp.float32)
penalty = jnp.sum(jnp.square(gradient), axis=-1)
penalty = jnp.mean(penalty) # Gradient penalty for training D.
fake_logit = discriminator_fn(reconstructed_images)
d_loss_real = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(real_logit), logits=real_logit).mean()
d_loss_fake = sigmoid_cross_entropy_with_logits(labels=jnp.zeros_like(fake_logit), logits=fake_logit).mean()
loss_d = d_loss_real + d_loss_fake + (penalty * self.config['g_grad_penalty_cost'])
d_loss_for_vae = sigmoid_cross_entropy_with_logits(labels=jnp.ones_like(fake_logit), logits=fake_logit).mean()
d_loss_for_vae = d_loss_for_vae * is_gan_training
real_pools, _ = get_pretrained_embs(resnet_params, resnet, images=images)
fake_pools, _ = get_pretrained_embs(resnet_params, resnet, images=reconstructed_images)
perceptual_loss = jnp.mean((real_pools - fake_pools)**2)
l2_loss = jnp.mean((reconstructed_images - images) ** 2)
quantizer_loss = result_dict['quantizer_loss'] if 'quantizer_loss' in result_dict else 0.0
if self.config['quantizer_type'] == 'kl' or self.config["quantizer_type"] == "kl_two":
quantizer_loss = quantizer_loss * self.config['kl_weight']
loss_vae = (l2_loss * FLAGS.model['l2_loss_weight']) \
+ (quantizer_loss * FLAGS.model['quantizer_loss_ratio']) \
+ (d_loss_for_vae * FLAGS.model['g_adversarial_loss_weight']) \
+ (perceptual_loss * FLAGS.model['perceptual_loss_weight'])
codebook_usage = result_dict['usage'] if 'usage' in result_dict else 0.0
return (loss_vae, loss_d), {
'loss_vae': loss_vae,
'loss_d': loss_d,
'l2_loss': l2_loss,
'd_loss_for_vae': d_loss_for_vae,
'perceptual_loss': perceptual_loss,
'quantizer_loss': quantizer_loss,
'codebook_usage': codebook_usage,
}
# This is a fancy way to do 'jax.grad' so (loss_vae, params_vqvae) and (loss_d, params_disc) are differentiated.
_, grad_fn, info = jax.vjp(loss_fn, self.vqvae.params, self.discriminator.params, has_aux=True)
vae_grads, _ = grad_fn((1., 0.))
_, d_grads = grad_fn((0., 1.))
vae_grads = jax.lax.pmean(vae_grads, axis_name=pmap_axis)
d_grads = jax.lax.pmean(d_grads, axis_name=pmap_axis)
d_grads = jax.tree_map(lambda x: x * is_gan_training, d_grads)
info = jax.lax.pmean(info, axis_name=pmap_axis)
if self.config['quantizer_type'] == 'fsq':
info['codebook_usage'] = jnp.sum(info['codebook_usage'] > 0) / info['codebook_usage'].shape[-1]
updates, new_opt_state = self.vqvae.tx.update(vae_grads, self.vqvae.opt_state, self.vqvae.params)
new_params = optax.apply_updates(self.vqvae.params, updates)
new_vqvae = self.vqvae.replace(step=self.vqvae.step + 1, params=new_params, opt_state=new_opt_state)
updates, new_opt_state = self.discriminator.tx.update(d_grads, self.discriminator.opt_state, self.discriminator.params)
new_params = optax.apply_updates(self.discriminator.params, updates)
new_discriminator = self.discriminator.replace(step=self.discriminator.step + 1, params=new_params, opt_state=new_opt_state)
info['grad_norm_vae'] = optax.global_norm(vae_grads)
info['grad_norm_d'] = optax.global_norm(d_grads)
info['update_norm'] = optax.global_norm(updates)
info['param_norm'] = optax.global_norm(new_params)
info['is_gan_training'] = is_gan_training
new_vqvae_eps = target_update(new_vqvae, self.vqvae_eps, 1-self.config['eps_update_rate'])
new_model = self.replace(rng=new_rng, vqvae=new_vqvae, vqvae_eps=new_vqvae_eps, discriminator=new_discriminator)
return new_model, info
@partial(jax.pmap, axis_name='data', in_axes=(0, 0))
def reconstruction(self, images, pmap_axis='data'):
reconstructed_images, _ = self.vqvae_eps(images)
reconstructed_images = jnp.clip(reconstructed_images, 0, 1)
return reconstructed_images
##############################################
## Training Code.
##############################################
def main(_):
np.random.seed(FLAGS.seed)
print("Using devices", jax.local_devices())
device_count = len(jax.local_devices())
global_device_count = jax.device_count()
local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
print("Device count", device_count)
print("Global device count", global_device_count)
print("Global Batch: ", FLAGS.batch_size)
print("Node Batch: ", local_batch_size)
print("Device Batch:", local_batch_size // device_count)
# Create wandb logger
if jax.process_index() == 0:
setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)
def get_dataset(is_train):
if 'imagenet' in FLAGS.dataset_name:
def deserialization_fn(data):
image = data['image']
min_side = tf.minimum(tf.shape(image)[0], tf.shape(image)[1])
image = tf.image.resize_with_crop_or_pad(image, min_side, min_side)
if 'imagenet256' in FLAGS.dataset_name:
image = tf.image.resize(image, (256, 256))
elif 'imagenet128' in FLAGS.dataset_name:
image = tf.image.resize(image, (128, 128))
else:
raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
if is_train:
image = tf.image.random_flip_left_right(image)
image = tf.cast(image, tf.float32) / 255.0
return image
split = tfds.split_for_jax_process('train' if is_train else 'validation', drop_remainder=True)
print(split)
dataset = tfds.load('imagenet2012', split=split, data_dir = "/dev/shm")
dataset = dataset.map(deserialization_fn, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.shuffle(10000, seed=42, reshuffle_each_iteration=True)
dataset = dataset.repeat()
dataset = dataset.batch(local_batch_size)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
dataset = tfds.as_numpy(dataset)
dataset = iter(dataset)
return dataset
else:
raise ValueError(f"Unknown dataset {FLAGS.dataset_name}")
dataset = get_dataset(is_train=True)
dataset_valid = get_dataset(is_train=False)
example_obs = next(dataset)[:1]
get_fid_activations = get_fid_network()
if not os.path.exists('./data/imagenet256_fidstats_openai.npz'):
raise ValueError("Please download the FID stats file! See the README.")
# truth_fid_stats = np.load('data/imagenet256_fidstats_openai.npz')
truth_fid_stats = np.load("./base_stats.npz")
rng = jax.random.PRNGKey(FLAGS.seed)
rng, param_key = jax.random.split(rng)
print("Total Memory on device:", float(jax.local_devices()[0].memory_stats()['bytes_limit']) / 1024**3, "GB")
###################################
# Creating Model and put on devices.
###################################
FLAGS.model.image_channels = example_obs.shape[-1]
FLAGS.model.image_size = example_obs.shape[1]
vqvae_def = VQVAE(FLAGS.model, train=True)
vqvae_params = vqvae_def.init({'params': param_key, 'noise': param_key}, example_obs)['params']
tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
vqvae_ts = TrainState.create(vqvae_def, vqvae_params, tx=tx)
vqvae_def_eps = VQVAE(FLAGS.model, train=False)
vqvae_eps_ts = TrainState.create(vqvae_def_eps, vqvae_params)
print("Total num of VQVAE parameters:", sum(x.size for x in jax.tree_util.tree_leaves(vqvae_params)))
discriminator_def = Discriminator(FLAGS.model)
discriminator_params = discriminator_def.init(param_key, example_obs)['params']
tx = optax.adam(learning_rate=FLAGS.model['lr'], b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'])
discriminator_ts = TrainState.create(discriminator_def, discriminator_params, tx=tx)
print("Total num of Discriminator parameters:", sum(x.size for x in jax.tree_util.tree_leaves(discriminator_params)))
model = VQGANModel(rng=rng, vqvae=vqvae_ts, vqvae_eps=vqvae_eps_ts, discriminator=discriminator_ts, config=FLAGS.model)
if FLAGS.load_dir is not None:
try:
cp = Checkpoint(FLAGS.load_dir)
model = cp.load_model(model)
print("Loaded model with step", model.vqvae.step)
except:
print("Random init")
else:
print("Random init")
model = flax.jax_utils.replicate(model, devices=jax.local_devices())
jax.debug.visualize_array_sharding(model.vqvae.params['decoder']['Conv_0']['bias'])
###################################
# Train Loop
###################################
best_fid = 100000
for i in tqdm.tqdm(range(1, FLAGS.max_steps + 1),
smoothing=0.1,
dynamic_ncols=True):
batch_images = next(dataset)
batch_images = batch_images.reshape((len(jax.local_devices()), -1, *batch_images.shape[1:])) # [devices, batch//devices, etc..]
model, update_info = model.update(batch_images)
if i % FLAGS.log_interval == 0:
update_info = jax.tree_map(lambda x: x.mean(), update_info)
train_metrics = {f'training/{k}': v for k, v in update_info.items()}
if jax.process_index() == 0:
wandb.log(train_metrics, step=i)
if i % FLAGS.eval_interval == 0:
# Print some images
reconstructed_images = model.reconstruction(batch_images) # [devices, 8, 256, 256, 3]
valid_images = next(dataset_valid)
valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]
if jax.process_index() == 0:
wandb.log({'batch_image_mean': batch_images.mean()}, step=i)
wandb.log({'reconstructed_images_mean': reconstructed_images.mean()}, step=i)
wandb.log({'batch_image_std': batch_images.std()}, step=i)
wandb.log({'reconstructed_images_std': reconstructed_images.std()}, step=i)
# plot comparison witah matplotlib. put each reconstruction side by side.
fig, axs = plt.subplots(2, 8, figsize=(30, 15))
#print("batch shape", batch_images.shape)#batch shape (4, 32, 256, 256, 3) #THE FIRST SHAPE IS DEVICES
#print("recon shape", reconstructed_images.shape)#it's all the same lol
#print("valid shape", valid_images.shape)
#it seems to be made for 8 device, aka tpuv3 instead
for j in range(4):#fuck it
axs[0, j].imshow(batch_images[j, 0], vmin=0, vmax=1)
axs[1, j].imshow(reconstructed_images[j, 0], vmin=0, vmax=1)
wandb.log({'reconstruction': wandb.Image(fig)}, step=i)
plt.close(fig)
fig, axs = plt.subplots(2, 8, figsize=(30, 15))
for j in range(4):
axs[0, j].imshow(valid_images[j, 0], vmin=0, vmax=1)
axs[1, j].imshow(valid_reconstructed_images[j, 0], vmin=0, vmax=1)
wandb.log({'reconstruction_valid': wandb.Image(fig)}, step=i)
plt.close(fig)
# Validation Losses
_, valid_update_info = model.update(valid_images)
valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
valid_metrics = {f'validation/{k}': v for k, v in valid_update_info.items()}
if jax.process_index() == 0:
wandb.log(valid_metrics, step=i)
# FID measurement.
activations = []
activations2 = []
for _ in range(780):#This is apprximately 40k
valid_images = next(dataset_valid)
valid_images = valid_images.reshape((len(jax.local_devices()), -1, *valid_images.shape[1:])) # [devices, batch//devices, etc..]
valid_reconstructed_images = model.reconstruction(valid_images) # [devices, 8, 256, 256, 3]
valid_reconstructed_images = jax.image.resize(valid_reconstructed_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
method='bilinear', antialias=False)
valid_reconstructed_images = 2 * valid_reconstructed_images - 1
activations += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]
#Only needed when we save
#valid_reconstructed_images = jax.image.resize(valid_images, (valid_images.shape[0], valid_images.shape[1], 299, 299, 3),
#method='bilinear', antialias=False)
#valid_reconstructed_images = 2 * valid_reconstructed_images - 1
#activations2 += [np.array(get_fid_activations(valid_reconstructed_images))[..., 0, 0, :]]
# TODO: use all_gather to get activations from all devices.
#This seems to be FID with only 64 images?
activations = np.concatenate(activations, axis=0)
activations = activations.reshape((-1, activations.shape[-1]))
# activations2 = np.concatenate(activations2, axis = 0)
# activations2 = activations2.reshape((-1, activations2.shape[-1]))
print("doing this much FID", activations.shape)#8192, 2048 should be 2048 items then I guess
mu1 = np.mean(activations, axis=0)
sigma1 = np.cov(activations, rowvar=False)
fid = fid_from_stats(mu1, sigma1, truth_fid_stats['mu'], truth_fid_stats['sigma'])
# mu2 = np.mean(activations2, axis = 0)
# sigma2 = np.cov(activations2, rowvar = False)
#save mu2 and sigma2
#And then exit for now
# np.savez("base.npz", mu = mu2, sigma = sigma2)
# exit()
#Used with loading base
#fid = fid_from_stats(mu1, sigma1, mu2, sigma2)
if jax.process_index() == 0:
wandb.log({'validation/fid': fid}, step=i)
print("validation FID at step", i, fid)
#Then if fid is smaller than previous best FID, save new FID
if fid < best_fid:
model_single = flax.jax_utils.unreplicate(model)
cp = Checkpoint(FLAGS.save_dir + "best.tmp")
cp.set_model(model_single)
cp.save()
best_fid = fid
if (i % FLAGS.save_interval == 0) and (FLAGS.save_dir is not None):
if jax.process_index() == 0:
model_single = flax.jax_utils.unreplicate(model)
cp = Checkpoint(FLAGS.save_dir)
cp.set_model(model_single)
cp.save()
if __name__ == '__main__':
app.run(main)
|