This model has been quantized using GPTQModel.

  • bits: 4
  • group_size: 128
  • desc_act: false
  • static_groups: false
  • sym: true
  • lm_head: false
  • damp_percent: 0.0025
  • damp_auto_increment: 0.0015
  • true_sequential: true
  • model_name_or_path: ""
  • model_file_base_name: "model"
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta:
    • quantizer: "gptqmodel:1.0.3-dev0"

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

model_name = "ModelCloud/GRIN-MoE-gptq-4bit"

prompt = [
    {"role": "system", 
     "content": "You are GRIN-MoE model from microsoft, a helpful assistant."},
    {"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}
]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = GPTQModel.from_quantized(model_name, trust_remote_code=True)

input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)

Lm_eval result:

Tasks Metric GRIN-MoE GRIN-MoE-gptq-4bit
arc_challenge acc ↑ 0.6408 0.6425
acc_norm ↑ 0.6561 0.6587
arc_easy acc ↑ 0.8645 0.8683
acc_norm ↑ 0.8422 0.846
boolq acc ↑ 0.8820 0.8765
hellaswag acc ↑ 0.6972 0.6891
acc_norm ↑ 0.8518 0.8486
lambada_openai acc ↑ 0.7058 0.7068
perplexity ↓ 3.4568 3.5732
mmlu acc ↑ 0.7751 0.7706
- humanities acc ↑ 0.7394 0.7384
- formal_logic acc ↑ 0.6429 0.6746
- high_school_european_history acc ↑ 0.8606 0.8364
- high_school_us_history acc ↑ 0.9118 0.902
- high_school_world_history acc ↑ 0.8903 0.8734
- international_law acc ↑ 0.9256 0.9091
- jurisprudence acc ↑ 0.8426 0.8519
- logical_fallacies acc ↑ 0.8344 0.8528
- moral_disputes acc ↑ 0.7977 0.8208
- moral_scenarios acc ↑ 0.6961 0.6849
- philosophy acc ↑ 0.8199 0.8071
- prehistory acc ↑ 0.8457 0.8426
- professional_law acc ↑ 0.6173 0.6193
- world_religions acc ↑ 0.8480 0.8655
- other acc ↑ 0.8130 0.805
- business_ethics acc ↑ 0.8100 0.78
- clinical_knowledge acc ↑ 0.8415 0.8302
- college_medicine acc ↑ 0.7514 0.7457
- global_facts acc ↑ 0.5700 0.54
- human_aging acc ↑ 0.7803 0.7668
- management acc ↑ 0.8447 0.8447
- marketing acc ↑ 0.9145 0.9103
- medical_genetics acc ↑ 0.9200 0.89
- miscellaneous acc ↑ 0.8966 0.8927
- nutrition acc ↑ 0.8333 0.8268
- professional_accounting acc ↑ 0.6489 0.656
- professional_medicine acc ↑ 0.8750 0.8603
- virology acc ↑ 0.5422 0.5361
- social sciences acc ↑ 0.8638 0.8544
- econometrics acc ↑ 0.5789 0.5789
- high_school_geography acc ↑ 0.9091 0.8788
- high_school_government_and_politics acc ↑ 0.9585 0.943
- high_school_macroeconomics acc ↑ 0.8308 0.8103
- high_school_microeconomics acc ↑ 0.9328 0.9286
- high_school_psychology acc ↑ 0.9321 0.9303
- human_sexuality acc ↑ 0.8779 0.8626
- professional_psychology acc ↑ 0.8382 0.8219
- public_relations acc ↑ 0.7545 0.7727
- security_studies acc ↑ 0.7878 0.7918
- sociology acc ↑ 0.8905 0.8955
- us_foreign_policy acc ↑ 0.9000 0.88
- stem acc ↑ 0.7044 0.7031
- abstract_algebra acc ↑ 0.5000 0.45
- anatomy acc ↑ 0.7407 0.7481
- astronomy acc ↑ 0.8618 0.8618
- college_biology acc ↑ 0.8889 0.875
- college_chemistry acc ↑ 0.6100 0.59
- college_computer_science acc ↑ 0.7100 0.67
- college_mathematics acc ↑ 0.5100 0.58
- college_physics acc ↑ 0.4608 0.4608
- computer_security acc ↑ 0.8200 0.82
- conceptual_physics acc ↑ 0.7787 0.766
- electrical_engineering acc ↑ 0.6828 0.6828
- elementary_mathematics acc ↑ 0.7566 0.7593
- high_school_biology acc ↑ 0.9000 0.9097
- high_school_chemistry acc ↑ 0.6650 0.665
- high_school_computer_science acc ↑ 0.8700 0.86
- high_school_mathematics acc ↑ 0.4370 0.4296
- high_school_physics acc ↑ 0.5960 0.5894
- high_school_statistics acc ↑ 0.7176 0.7222
- machine_learning acc ↑ 0.6071 0.6339
openbookqa acc ↑ 0.3920 0.386
acc_norm ↑ 0.4900 0.486
piqa acc ↑ 0.8183 0.8166
acc_norm ↑ 0.8205 0.8177
rte acc ↑ 0.8014 0.7834
truthfulqa_mc1 acc ↑ 0.3880 0.399
winogrande acc ↑ 0.7940 0.768
Groups Metric Value Value
mmlu acc ↑ 0.7751 0.7706
- humanities acc ↑ 0.7394 0.7384
- other acc ↑ 0.8130 0.805
- social sciences acc ↑ 0.8638 0.8544
- stem acc ↑ 0.7044 0.7031
Downloads last month
2
Safetensors
Model size
5.84B params
Tensor type
I32
Β·
BF16
Β·
FP16
Β·
Inference API
Unable to determine this model's library. Check the docs .