NER in Urdu
muril_base_cased_urdu_ner
Base model is google/muril-base-cased, a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. Urdu NER dataset is translated from the Hindi NER dataset from HiNER.
Usage
example:
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
model = AutoModelForTokenClassification.from_pretrained("MichaelHuang/muril_base_cased_urdu_ner")
tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased")
# Define the labels dictionary
labels_dict = {
0: "B-FESTIVAL",
1: "B-GAME",
2: "B-LANGUAGE",
3: "B-LITERATURE",
4: "B-LOCATION",
5: "B-MISC",
6: "B-NUMEX",
7: "B-ORGANIZATION",
8: "B-PERSON",
9: "B-RELIGION",
10: "B-TIMEX",
11: "I-FESTIVAL",
12: "I-GAME",
13: "I-LANGUAGE",
14: "I-LITERATURE",
15: "I-LOCATION",
16: "I-MISC",
17: "I-NUMEX",
18: "I-ORGANIZATION",
19: "I-PERSON",
20: "I-RELIGION",
21: "I-TIMEX",
22: "O"
}
def ner_predict(sentence, model, tokenizer, labels_dict):
# Tokenize the input sentence
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted labels
predicted_labels = torch.argmax(outputs.logits, dim=2)
# Convert tokens and labels to lists
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
labels = predicted_labels.squeeze().tolist()
# Map numeric labels to string labels
predicted_labels = [labels_dict[label] for label in labels]
# Combine tokens and labels
result = list(zip(tokens, predicted_labels))
return result
test_sentence = "امیتابھ اور ریکھا کی فلم 'گنگا کی سوگندھ' 10 فروری سنہ 1978 کو ریلیز ہوئی تھی۔ اس کے بعد راکھی، رندھیر کپور اور نیتو سنگھ کے ساتھ 'قسمے وعدے' 21 اپریل 1978 کو ریلیز ہوئی۔"
predictions = ner_predict(test_sentence, model, tokenizer, labels_dict)
for token, label in predictions:
print(f"{token}: {label}")
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.