wav2vec2-large-xls-r-300m-Mezge

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3245
  • Wer: 0.1777

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
29.8978 1.9242 400 3.4282 1.0
8.319 3.8472 800 0.5659 0.5170
1.6729 5.7702 1200 0.3004 0.2911
0.8499 7.6931 1600 0.2747 0.2542
0.5621 9.6161 2000 0.2893 0.2320
0.4271 11.5391 2400 0.2720 0.2185
0.3494 13.4621 2800 0.2883 0.2143
0.2881 15.3851 3200 0.3053 0.2050
0.2588 17.3081 3600 0.3074 0.1977
0.2287 19.2310 4000 0.3137 0.1924
0.1936 21.1540 4400 0.3121 0.1907
0.1728 23.0770 4800 0.3246 0.1847
0.1567 25.0 5200 0.3268 0.1855
0.1359 26.9242 5600 0.3212 0.1798
0.1199 28.8472 6000 0.3245 0.1777

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Mezge/wav2vec2-large-xls-r-300m-Mezge

Finetuned
(556)
this model