metadata
language:
- en
license: llama3
library_name: transformers
tags:
- axolotl
- finetune
- dpo
- facebook
- meta
- pytorch
- llama
- llama-3
- chatml
base_model: meta-llama/Meta-Llama-3-70B-Instruct
datasets:
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
model_name: calme-2.1-llama3-70b
pipeline_tag: text-generation
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-2.1-llama3-70b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.67
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.11
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 86.05
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b
name: Open LLM Leaderboard
MaziyarPanahi/calme-2.1-llama3-70b
This model is a fine-tune (DPO) of meta-llama/Meta-Llama-3-70B-Instruct
model.
β‘ Quantized GGUF
All GGUF models are available here: MaziyarPanahi/calme-2.1-llama3-70b-GGUF
π Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 78.11 |
AI2 Reasoning Challenge (25-Shot) | 71.67 |
HellaSwag (10-Shot) | 85.83 |
MMLU (5-Shot) | 80.12 |
TruthfulQA (0-shot) | 62.11 |
Winogrande (5-shot) | 82.87 |
GSM8k (5-shot) | 86.05 |
Top 10 models on the Leaderboard
Prompt Template
This model uses ChatML
prompt template:
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
How to use
You can use this model by using MaziyarPanahi/calme-2.1-llama3-70b
as the model name in Hugging Face's
transformers library.
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/calme-2.1-llama3-70b"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>"),
tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too
]
outputs = pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])