File size: 3,127 Bytes
e8272ad 1492e75 e8272ad 1492e75 e8272ad 1492e75 e8272ad 1492e75 e8272ad 1492e75 e8272ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
library_name: peft
license: apache-2.0
base_model: ibm-granite/granite-3.1-8b-instruct
tags:
- generated_from_trainer
model-index:
- name: granite-math-plans-3.1-8b-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.2`
```yaml
base_model: ibm-granite/granite-3.1-8b-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
resize_token_embeddings_to_32x: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: task_decomposition_training_data_math.jsonl
type: chat_template
chat_template: tokenizer_default
field_messages: conversations
message_field_role: role
message_field_content: value
dataset_prepared_path: last_run_prepared_sft
val_set_size: 0
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
output_dir: granite-math-plans-3.1-8b-lora
wandb_project: null
wandb_entity: null
wandb_watch: null
wandb_name: null
wandb_log_model: null
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 8
micro_batch_size: 1
eval_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-05
max_grad_norm: 1.0
logging_steps: 10
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
eval_steps:
save_strategy: epoch
eval_table_size:
num_processes: 8
deepspeed:
weight_decay: 0.0
```
</details><br>
# granite-math-plans-3.1-8b-lora
This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the task_decomposition_training_data_math.jsonl dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 154
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |