MatVet commited on
Commit
e8272ad
·
verified ·
1 Parent(s): 3eb0a16

Initial model upload

Browse files
Files changed (45) hide show
  1. .ipynb_checkpoints/README-checkpoint.md +141 -0
  2. README.md +141 -0
  3. adapter_config.json +34 -0
  4. adapter_model.bin +3 -0
  5. added_tokens.json +5 -0
  6. checkpoint-3084/README.md +202 -0
  7. checkpoint-3084/adapter_config.json +34 -0
  8. checkpoint-3084/adapter_model.safetensors +3 -0
  9. checkpoint-3084/added_tokens.json +5 -0
  10. checkpoint-3084/merges.txt +0 -0
  11. checkpoint-3084/optimizer.pt +3 -0
  12. checkpoint-3084/rng_state_0.pth +3 -0
  13. checkpoint-3084/rng_state_1.pth +3 -0
  14. checkpoint-3084/rng_state_2.pth +3 -0
  15. checkpoint-3084/rng_state_3.pth +3 -0
  16. checkpoint-3084/rng_state_4.pth +3 -0
  17. checkpoint-3084/rng_state_5.pth +3 -0
  18. checkpoint-3084/rng_state_6.pth +3 -0
  19. checkpoint-3084/rng_state_7.pth +3 -0
  20. checkpoint-3084/scheduler.pt +3 -0
  21. checkpoint-3084/special_tokens_map.json +35 -0
  22. checkpoint-3084/tokenizer.json +0 -0
  23. checkpoint-3084/tokenizer_config.json +199 -0
  24. checkpoint-3084/trainer_state.json +2189 -0
  25. checkpoint-3084/training_args.bin +3 -0
  26. checkpoint-3084/vocab.json +0 -0
  27. config.json +49 -0
  28. merged/added_tokens.json +5 -0
  29. merged/config.json +33 -0
  30. merged/generation_config.json +8 -0
  31. merged/merges.txt +0 -0
  32. merged/pytorch_model-00001-of-00004.bin +3 -0
  33. merged/pytorch_model-00002-of-00004.bin +3 -0
  34. merged/pytorch_model-00003-of-00004.bin +3 -0
  35. merged/pytorch_model-00004-of-00004.bin +3 -0
  36. merged/pytorch_model.bin.index.json +370 -0
  37. merged/special_tokens_map.json +35 -0
  38. merged/tokenizer.json +0 -0
  39. merged/tokenizer_config.json +199 -0
  40. merged/vocab.json +0 -0
  41. merges.txt +0 -0
  42. special_tokens_map.json +35 -0
  43. tokenizer.json +0 -0
  44. tokenizer_config.json +199 -0
  45. vocab.json +0 -0
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: ibm-granite/granite-3.1-8b-instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.5.2`
19
+ ```yaml
20
+ base_model: ibm-granite/granite-3.1-8b-instruct
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ resize_token_embeddings_to_32x: true
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl
31
+ type: chat_template
32
+ chat_template: tokenizer_default
33
+ field_messages: conversations
34
+ message_field_role: role
35
+ message_field_content: value
36
+ dataset_prepared_path: last_run_prepared_sft
37
+
38
+ val_set_size: 0
39
+ sequence_len: 8192
40
+ sample_packing: false
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: false
43
+ output_dir: /home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
44
+
45
+ wandb_project: null
46
+ wandb_entity: null
47
+ wandb_watch: null
48
+ wandb_name: null
49
+ wandb_log_model: null
50
+
51
+ adapter: lora
52
+ lora_model_dir:
53
+ lora_r: 32
54
+ lora_alpha: 16
55
+ lora_dropout: 0.05
56
+ lora_target_linear: true
57
+ lora_fan_in_fan_out:
58
+
59
+ gradient_accumulation_steps: 8
60
+ micro_batch_size: 1
61
+ eval_batch_size: 1
62
+ num_epochs: 3
63
+ optimizer: adamw_bnb_8bit
64
+ lr_scheduler: cosine
65
+ learning_rate: 1e-05
66
+
67
+ max_grad_norm: 1.0
68
+ logging_steps: 10
69
+
70
+ train_on_inputs: false
71
+ group_by_length: false
72
+
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: false
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ xformers_attention:
84
+ flash_attention: true
85
+ warmup_ratio: 0.05
86
+ eval_steps:
87
+ save_strategy: epoch
88
+ eval_table_size:
89
+ num_processes: 8
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.0-8b-lora
97
+
98
+ This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl dataset.
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 1e-05
118
+ - train_batch_size: 1
119
+ - eval_batch_size: 1
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - num_devices: 8
123
+ - gradient_accumulation_steps: 8
124
+ - total_train_batch_size: 64
125
+ - total_eval_batch_size: 8
126
+ - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
127
+ - lr_scheduler_type: cosine
128
+ - lr_scheduler_warmup_steps: 154
129
+ - num_epochs: 3
130
+
131
+ ### Training results
132
+
133
+
134
+
135
+ ### Framework versions
136
+
137
+ - PEFT 0.13.2
138
+ - Transformers 4.46.3
139
+ - Pytorch 2.3.1+cu121
140
+ - Datasets 3.1.0
141
+ - Tokenizers 0.20.3
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: ibm-granite/granite-3.1-8b-instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.5.2`
19
+ ```yaml
20
+ base_model: ibm-granite/granite-3.1-8b-instruct
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ resize_token_embeddings_to_32x: true
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl
31
+ type: chat_template
32
+ chat_template: tokenizer_default
33
+ field_messages: conversations
34
+ message_field_role: role
35
+ message_field_content: value
36
+ dataset_prepared_path: last_run_prepared_sft
37
+
38
+ val_set_size: 0
39
+ sequence_len: 8192
40
+ sample_packing: false
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: false
43
+ output_dir: /home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
44
+
45
+ wandb_project: null
46
+ wandb_entity: null
47
+ wandb_watch: null
48
+ wandb_name: null
49
+ wandb_log_model: null
50
+
51
+ adapter: lora
52
+ lora_model_dir:
53
+ lora_r: 32
54
+ lora_alpha: 16
55
+ lora_dropout: 0.05
56
+ lora_target_linear: true
57
+ lora_fan_in_fan_out:
58
+
59
+ gradient_accumulation_steps: 8
60
+ micro_batch_size: 1
61
+ eval_batch_size: 1
62
+ num_epochs: 3
63
+ optimizer: adamw_bnb_8bit
64
+ lr_scheduler: cosine
65
+ learning_rate: 1e-05
66
+
67
+ max_grad_norm: 1.0
68
+ logging_steps: 10
69
+
70
+ train_on_inputs: false
71
+ group_by_length: false
72
+
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: false
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ xformers_attention:
84
+ flash_attention: true
85
+ warmup_ratio: 0.05
86
+ eval_steps:
87
+ save_strategy: epoch
88
+ eval_table_size:
89
+ num_processes: 8
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.0-8b-lora
97
+
98
+ This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl dataset.
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 1e-05
118
+ - train_batch_size: 1
119
+ - eval_batch_size: 1
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - num_devices: 8
123
+ - gradient_accumulation_steps: 8
124
+ - total_train_batch_size: 64
125
+ - total_eval_batch_size: 8
126
+ - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
127
+ - lr_scheduler_type: cosine
128
+ - lr_scheduler_warmup_steps: 154
129
+ - num_epochs: 3
130
+
131
+ ### Training results
132
+
133
+
134
+
135
+ ### Framework versions
136
+
137
+ - PEFT 0.13.2
138
+ - Transformers 4.46.3
139
+ - Pytorch 2.3.1+cu121
140
+ - Datasets 3.1.0
141
+ - Tokenizers 0.20.3
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a78a4b83edd30daeebc4160a94362b8d9e82de7f4c73fdd288a8c139902b6ce
3
+ size 798955662
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
checkpoint-3084/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.1-8b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-3084/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-3084/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b0faa4e435ee5c37b2be55def5eb7079adc516de1757ee17664c3e132e38dd8
3
+ size 1201743872
checkpoint-3084/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
checkpoint-3084/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3084/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c59cba04e80a61127d73c24d5ada98a795f926f0c43608ba7d0e96610e87b5ec
3
+ size 201669716
checkpoint-3084/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed810de1ba5fc3c6ca4d86854492dbc9b392b185654e34c3e1298b2dd5b4feb
3
+ size 15984
checkpoint-3084/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9047f9e57b13ce54bdc5b5b2ac806b3de36e06ef41a69bdb1e4c4cc4a3d86213
3
+ size 15984
checkpoint-3084/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dbf4d66848ba437330e008f2cfc75e5031e00e169e4f519e603306517210157
3
+ size 15984
checkpoint-3084/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca58af17bec86aa02d83d02f1dce1adcf2ace175d82b08a9d5bbe941bb4ef825
3
+ size 15984
checkpoint-3084/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66048d766ef637eeffe93015803833352137229af4fed5680560d5d9e5a01142
3
+ size 15984
checkpoint-3084/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f18b395aad3543ed1f03de02e877e04a4dfc0cc6c998cbe8c928374e179ab8fa
3
+ size 15984
checkpoint-3084/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3650b87f28f82cc769d88cb6d559d4db5437f0ec50ddb361dfc6992097168715
3
+ size 15984
checkpoint-3084/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761e2386a1b8c1db2a4a08b5e726c3e71c451a3af1a391f75930bbade8be22b6
3
+ size 15984
checkpoint-3084/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f71897c50d4a0cf320866c3d469525886ee81f2b9feecf8ecd6d74bf145d7a23
3
+ size 1064
checkpoint-3084/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
checkpoint-3084/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3084/tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
checkpoint-3084/trainer_state.json ADDED
@@ -0,0 +1,2189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.998298906439854,
5
+ "eval_steps": 500,
6
+ "global_step": 3084,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009720534629404616,
13
+ "grad_norm": 3.39630126953125,
14
+ "learning_rate": 6.493506493506493e-07,
15
+ "loss": 0.9229,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.019441069258809233,
20
+ "grad_norm": 4.325911521911621,
21
+ "learning_rate": 1.2987012987012986e-06,
22
+ "loss": 0.9383,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.02916160388821385,
27
+ "grad_norm": 4.230486869812012,
28
+ "learning_rate": 1.9480519480519483e-06,
29
+ "loss": 0.932,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.038882138517618466,
34
+ "grad_norm": 4.264225006103516,
35
+ "learning_rate": 2.597402597402597e-06,
36
+ "loss": 0.9285,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04860267314702309,
41
+ "grad_norm": 3.955381155014038,
42
+ "learning_rate": 3.246753246753247e-06,
43
+ "loss": 0.9333,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0583232077764277,
48
+ "grad_norm": 4.48983097076416,
49
+ "learning_rate": 3.896103896103897e-06,
50
+ "loss": 0.9064,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06804374240583232,
55
+ "grad_norm": 4.365206241607666,
56
+ "learning_rate": 4.5454545454545455e-06,
57
+ "loss": 0.8685,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07776427703523693,
62
+ "grad_norm": 3.1013827323913574,
63
+ "learning_rate": 5.194805194805194e-06,
64
+ "loss": 0.7865,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08748481166464156,
69
+ "grad_norm": 2.3804359436035156,
70
+ "learning_rate": 5.844155844155844e-06,
71
+ "loss": 0.7293,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.09720534629404617,
76
+ "grad_norm": 1.5543646812438965,
77
+ "learning_rate": 6.493506493506494e-06,
78
+ "loss": 0.6636,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.10692588092345079,
83
+ "grad_norm": 1.550211787223816,
84
+ "learning_rate": 7.1428571428571436e-06,
85
+ "loss": 0.6161,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.1166464155528554,
90
+ "grad_norm": 1.2692899703979492,
91
+ "learning_rate": 7.792207792207793e-06,
92
+ "loss": 0.5856,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.12636695018226002,
97
+ "grad_norm": 1.4034239053726196,
98
+ "learning_rate": 8.441558441558442e-06,
99
+ "loss": 0.5672,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.13608748481166463,
104
+ "grad_norm": 1.0562485456466675,
105
+ "learning_rate": 9.090909090909091e-06,
106
+ "loss": 0.5494,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.14580801944106925,
111
+ "grad_norm": 1.0509977340698242,
112
+ "learning_rate": 9.740259740259742e-06,
113
+ "loss": 0.5339,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.15552855407047386,
118
+ "grad_norm": 5.404982089996338,
119
+ "learning_rate": 9.99989653212821e-06,
120
+ "loss": 0.5324,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.1652490886998785,
125
+ "grad_norm": 1.1149495840072632,
126
+ "learning_rate": 9.999264243974907e-06,
127
+ "loss": 0.5249,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.17496962332928312,
132
+ "grad_norm": 1.0145925283432007,
133
+ "learning_rate": 9.998057222421298e-06,
134
+ "loss": 0.5362,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.18469015795868773,
139
+ "grad_norm": 1.1371104717254639,
140
+ "learning_rate": 9.99627560623093e-06,
141
+ "loss": 0.5101,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.19441069258809235,
146
+ "grad_norm": 1.1615630388259888,
147
+ "learning_rate": 9.993919600224802e-06,
148
+ "loss": 0.5239,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.20413122721749696,
153
+ "grad_norm": 1.010383129119873,
154
+ "learning_rate": 9.990989475257843e-06,
155
+ "loss": 0.5024,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.21385176184690158,
160
+ "grad_norm": 1.096696376800537,
161
+ "learning_rate": 9.98748556818776e-06,
162
+ "loss": 0.5079,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.2235722964763062,
167
+ "grad_norm": 1.236509919166565,
168
+ "learning_rate": 9.98340828183631e-06,
169
+ "loss": 0.4984,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2332928311057108,
174
+ "grad_norm": 1.9408361911773682,
175
+ "learning_rate": 9.978758084943004e-06,
176
+ "loss": 0.5153,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.24301336573511542,
181
+ "grad_norm": 1.1162898540496826,
182
+ "learning_rate": 9.973535512111196e-06,
183
+ "loss": 0.5079,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.25273390036452004,
188
+ "grad_norm": 1.269111156463623,
189
+ "learning_rate": 9.967741163746654e-06,
190
+ "loss": 0.5306,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.2624544349939247,
195
+ "grad_norm": 3.077763795852661,
196
+ "learning_rate": 9.961375705988501e-06,
197
+ "loss": 0.5083,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.27217496962332927,
202
+ "grad_norm": 1.1506752967834473,
203
+ "learning_rate": 9.954439870632662e-06,
204
+ "loss": 0.5135,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.2818955042527339,
209
+ "grad_norm": 1.2572377920150757,
210
+ "learning_rate": 9.946934455047718e-06,
211
+ "loss": 0.5172,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.2916160388821385,
216
+ "grad_norm": 4.563354015350342,
217
+ "learning_rate": 9.938860322083241e-06,
218
+ "loss": 0.4991,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.30133657351154314,
223
+ "grad_norm": 1.1372555494308472,
224
+ "learning_rate": 9.930218399970602e-06,
225
+ "loss": 0.5172,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.3110571081409477,
230
+ "grad_norm": 1.1849030256271362,
231
+ "learning_rate": 9.921009682216251e-06,
232
+ "loss": 0.5147,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.32077764277035237,
237
+ "grad_norm": 2.4454076290130615,
238
+ "learning_rate": 9.911235227487506e-06,
239
+ "loss": 0.5052,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.330498177399757,
244
+ "grad_norm": 1.2442922592163086,
245
+ "learning_rate": 9.900896159490843e-06,
246
+ "loss": 0.5015,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.3402187120291616,
251
+ "grad_norm": 1.2128549814224243,
252
+ "learning_rate": 9.88999366684271e-06,
253
+ "loss": 0.5009,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.34993924665856624,
258
+ "grad_norm": 1.3940240144729614,
259
+ "learning_rate": 9.878529002932877e-06,
260
+ "loss": 0.5005,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.3596597812879708,
265
+ "grad_norm": 1.2711237668991089,
266
+ "learning_rate": 9.866503485780347e-06,
267
+ "loss": 0.5079,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.36938031591737547,
272
+ "grad_norm": 1.4298995733261108,
273
+ "learning_rate": 9.853918497881831e-06,
274
+ "loss": 0.4941,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.37910085054678005,
279
+ "grad_norm": 1.7025047540664673,
280
+ "learning_rate": 9.840775486052807e-06,
281
+ "loss": 0.4878,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3888213851761847,
286
+ "grad_norm": 1.3242675065994263,
287
+ "learning_rate": 9.827075961261188e-06,
288
+ "loss": 0.5048,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3985419198055893,
293
+ "grad_norm": 1.3964117765426636,
294
+ "learning_rate": 9.812821498453624e-06,
295
+ "loss": 0.5015,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.4082624544349939,
300
+ "grad_norm": 1.50648832321167,
301
+ "learning_rate": 9.798013736374436e-06,
302
+ "loss": 0.4931,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.41798298906439857,
307
+ "grad_norm": 1.4148674011230469,
308
+ "learning_rate": 9.782654377377215e-06,
309
+ "loss": 0.5081,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.42770352369380316,
314
+ "grad_norm": 1.3090276718139648,
315
+ "learning_rate": 9.766745187229124e-06,
316
+ "loss": 0.5072,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.4374240583232078,
321
+ "grad_norm": 2.2069995403289795,
322
+ "learning_rate": 9.750287994907883e-06,
323
+ "loss": 0.4875,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.4471445929526124,
328
+ "grad_norm": 1.469313144683838,
329
+ "learning_rate": 9.733284692391524e-06,
330
+ "loss": 0.4845,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.456865127582017,
335
+ "grad_norm": 1.5857908725738525,
336
+ "learning_rate": 9.715737234440868e-06,
337
+ "loss": 0.4922,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4665856622114216,
342
+ "grad_norm": 1.4413847923278809,
343
+ "learning_rate": 9.697647638374797e-06,
344
+ "loss": 0.5025,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.47630619684082626,
349
+ "grad_norm": 1.7726529836654663,
350
+ "learning_rate": 9.679017983838346e-06,
351
+ "loss": 0.4965,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.48602673147023084,
356
+ "grad_norm": 1.4608409404754639,
357
+ "learning_rate": 9.659850412563615e-06,
358
+ "loss": 0.4885,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.4957472660996355,
363
+ "grad_norm": 1.461808204650879,
364
+ "learning_rate": 9.64014712812354e-06,
365
+ "loss": 0.5012,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.5054678007290401,
370
+ "grad_norm": 1.954996943473816,
371
+ "learning_rate": 9.619910395678582e-06,
372
+ "loss": 0.5032,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.5151883353584447,
377
+ "grad_norm": 1.4469919204711914,
378
+ "learning_rate": 9.59914254171629e-06,
379
+ "loss": 0.4986,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.5249088699878494,
384
+ "grad_norm": 1.5403884649276733,
385
+ "learning_rate": 9.577845953783864e-06,
386
+ "loss": 0.475,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.534629404617254,
391
+ "grad_norm": 4.5531535148620605,
392
+ "learning_rate": 9.556023080213657e-06,
393
+ "loss": 0.4995,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.5443499392466585,
398
+ "grad_norm": 1.598029375076294,
399
+ "learning_rate": 9.533676429841712e-06,
400
+ "loss": 0.4904,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.5540704738760632,
405
+ "grad_norm": 1.4221954345703125,
406
+ "learning_rate": 9.51080857171934e-06,
407
+ "loss": 0.4886,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5637910085054678,
412
+ "grad_norm": 1.4414297342300415,
413
+ "learning_rate": 9.487422134817767e-06,
414
+ "loss": 0.5036,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5735115431348724,
419
+ "grad_norm": 1.551998496055603,
420
+ "learning_rate": 9.463519807725906e-06,
421
+ "loss": 0.5018,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.583232077764277,
426
+ "grad_norm": 1.9298173189163208,
427
+ "learning_rate": 9.439104338341255e-06,
428
+ "loss": 0.5037,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5929526123936817,
433
+ "grad_norm": 1.6527436971664429,
434
+ "learning_rate": 9.414178533554e-06,
435
+ "loss": 0.4946,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.6026731470230863,
440
+ "grad_norm": 1.6211801767349243,
441
+ "learning_rate": 9.388745258924321e-06,
442
+ "loss": 0.4852,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.6123936816524909,
447
+ "grad_norm": 1.8734742403030396,
448
+ "learning_rate": 9.362807438352954e-06,
449
+ "loss": 0.4755,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.6221142162818954,
454
+ "grad_norm": 1.505476951599121,
455
+ "learning_rate": 9.33636805374505e-06,
456
+ "loss": 0.4916,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.6318347509113001,
461
+ "grad_norm": 1.6077882051467896,
462
+ "learning_rate": 9.309430144667376e-06,
463
+ "loss": 0.4962,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.6415552855407047,
468
+ "grad_norm": 1.5872342586517334,
469
+ "learning_rate": 9.28199680799885e-06,
470
+ "loss": 0.4867,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.6512758201701093,
475
+ "grad_norm": 1.5471742153167725,
476
+ "learning_rate": 9.254071197574539e-06,
477
+ "loss": 0.4845,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.660996354799514,
482
+ "grad_norm": 1.6092792749404907,
483
+ "learning_rate": 9.22565652382307e-06,
484
+ "loss": 0.4758,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.6707168894289186,
489
+ "grad_norm": 1.589211344718933,
490
+ "learning_rate": 9.196756053397544e-06,
491
+ "loss": 0.4856,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6804374240583232,
496
+ "grad_norm": 1.6765447854995728,
497
+ "learning_rate": 9.167373108799999e-06,
498
+ "loss": 0.4854,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6901579586877278,
503
+ "grad_norm": 1.7541825771331787,
504
+ "learning_rate": 9.137511067999444e-06,
505
+ "loss": 0.4952,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.6998784933171325,
510
+ "grad_norm": 1.6507395505905151,
511
+ "learning_rate": 9.107173364043501e-06,
512
+ "loss": 0.4887,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.7095990279465371,
517
+ "grad_norm": 1.5526636838912964,
518
+ "learning_rate": 9.076363484663745e-06,
519
+ "loss": 0.4815,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.7193195625759417,
524
+ "grad_norm": 1.7525495290756226,
525
+ "learning_rate": 9.045084971874738e-06,
526
+ "loss": 0.4756,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.7290400972053463,
531
+ "grad_norm": 1.812304139137268,
532
+ "learning_rate": 9.013341421566818e-06,
533
+ "loss": 0.4847,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.7387606318347509,
538
+ "grad_norm": 1.6675856113433838,
539
+ "learning_rate": 8.981136483092719e-06,
540
+ "loss": 0.4756,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.7484811664641555,
545
+ "grad_norm": 1.7526271343231201,
546
+ "learning_rate": 8.948473858848005e-06,
547
+ "loss": 0.491,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.7582017010935601,
552
+ "grad_norm": 2.878983736038208,
553
+ "learning_rate": 8.915357303845453e-06,
554
+ "loss": 0.4907,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.7679222357229648,
559
+ "grad_norm": 1.9142616987228394,
560
+ "learning_rate": 8.881790625283352e-06,
561
+ "loss": 0.4838,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.7776427703523694,
566
+ "grad_norm": 1.7589762210845947,
567
+ "learning_rate": 8.847777682107805e-06,
568
+ "loss": 0.4792,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.787363304981774,
573
+ "grad_norm": 1.7950881719589233,
574
+ "learning_rate": 8.813322384569114e-06,
575
+ "loss": 0.4932,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.7970838396111786,
580
+ "grad_norm": 1.7117515802383423,
581
+ "learning_rate": 8.77842869377222e-06,
582
+ "loss": 0.4873,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.8068043742405833,
587
+ "grad_norm": 1.83305823802948,
588
+ "learning_rate": 8.743100621221334e-06,
589
+ "loss": 0.4928,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.8165249088699879,
594
+ "grad_norm": 1.8732259273529053,
595
+ "learning_rate": 8.707342228358753e-06,
596
+ "loss": 0.4861,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.8262454434993924,
601
+ "grad_norm": 1.688181757926941,
602
+ "learning_rate": 8.671157626097949e-06,
603
+ "loss": 0.4842,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.8359659781287971,
608
+ "grad_norm": 1.8716121912002563,
609
+ "learning_rate": 8.634550974350954e-06,
610
+ "loss": 0.5003,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.8456865127582017,
615
+ "grad_norm": 1.9156651496887207,
616
+ "learning_rate": 8.597526481550133e-06,
617
+ "loss": 0.4843,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.8554070473876063,
622
+ "grad_norm": 1.92584228515625,
623
+ "learning_rate": 8.560088404164358e-06,
624
+ "loss": 0.4716,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.8651275820170109,
629
+ "grad_norm": 1.8322736024856567,
630
+ "learning_rate": 8.522241046209674e-06,
631
+ "loss": 0.4926,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.8748481166464156,
636
+ "grad_norm": 1.990666389465332,
637
+ "learning_rate": 8.483988758754492e-06,
638
+ "loss": 0.4872,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.8845686512758202,
643
+ "grad_norm": 1.876725435256958,
644
+ "learning_rate": 8.445335939419374e-06,
645
+ "loss": 0.482,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.8942891859052248,
650
+ "grad_norm": 3.740494966506958,
651
+ "learning_rate": 8.406287031871469e-06,
652
+ "loss": 0.4884,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.9040097205346294,
657
+ "grad_norm": 1.6894994974136353,
658
+ "learning_rate": 8.36684652531365e-06,
659
+ "loss": 0.4751,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.913730255164034,
664
+ "grad_norm": 1.8580703735351562,
665
+ "learning_rate": 8.327018953968423e-06,
666
+ "loss": 0.48,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.9234507897934386,
671
+ "grad_norm": 1.8106019496917725,
672
+ "learning_rate": 8.286808896556655e-06,
673
+ "loss": 0.4826,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.9331713244228432,
678
+ "grad_norm": 1.7582460641860962,
679
+ "learning_rate": 8.246220975771185e-06,
680
+ "loss": 0.4867,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.9428918590522479,
685
+ "grad_norm": 1.7424395084381104,
686
+ "learning_rate": 8.205259857745382e-06,
687
+ "loss": 0.4797,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.9526123936816525,
692
+ "grad_norm": 1.8223532438278198,
693
+ "learning_rate": 8.163930251516719e-06,
694
+ "loss": 0.4733,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.9623329283110571,
699
+ "grad_norm": 1.8597066402435303,
700
+ "learning_rate": 8.122236908485391e-06,
701
+ "loss": 0.486,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.9720534629404617,
706
+ "grad_norm": 1.8571597337722778,
707
+ "learning_rate": 8.080184621868089e-06,
708
+ "loss": 0.4729,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.9817739975698664,
713
+ "grad_norm": 1.9846396446228027,
714
+ "learning_rate": 8.037778226146949e-06,
715
+ "loss": 0.4858,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.991494532199271,
720
+ "grad_norm": 4.8959150314331055,
721
+ "learning_rate": 7.995022596513762e-06,
722
+ "loss": 0.476,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 1.0014580801944106,
727
+ "grad_norm": 4.2978339195251465,
728
+ "learning_rate": 7.951922648309507e-06,
729
+ "loss": 0.4788,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 1.0111786148238153,
734
+ "grad_norm": 4.751235008239746,
735
+ "learning_rate": 7.908483336459265e-06,
736
+ "loss": 0.4827,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 1.02089914945322,
741
+ "grad_norm": 3.760265827178955,
742
+ "learning_rate": 7.864709654902579e-06,
743
+ "loss": 0.4726,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 1.0306196840826245,
748
+ "grad_norm": 4.5475287437438965,
749
+ "learning_rate": 7.820606636019341e-06,
750
+ "loss": 0.4691,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 1.0403402187120292,
755
+ "grad_norm": 4.606244087219238,
756
+ "learning_rate": 7.776179350051246e-06,
757
+ "loss": 0.4789,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 1.0500607533414337,
762
+ "grad_norm": 3.974292039871216,
763
+ "learning_rate": 7.731432904518893e-06,
764
+ "loss": 0.4813,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 1.0597812879708384,
769
+ "grad_norm": 3.419517755508423,
770
+ "learning_rate": 7.68637244363462e-06,
771
+ "loss": 0.4748,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 1.069501822600243,
776
+ "grad_norm": 4.130045413970947,
777
+ "learning_rate": 7.6410031477111e-06,
778
+ "loss": 0.476,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 1.0792223572296475,
783
+ "grad_norm": 4.5706329345703125,
784
+ "learning_rate": 7.595330232565785e-06,
785
+ "loss": 0.4692,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 1.0889428918590522,
790
+ "grad_norm": 3.4931533336639404,
791
+ "learning_rate": 7.549358948921293e-06,
792
+ "loss": 0.474,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 1.098663426488457,
797
+ "grad_norm": 4.1753034591674805,
798
+ "learning_rate": 7.5030945818017505e-06,
799
+ "loss": 0.4714,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 1.1083839611178614,
804
+ "grad_norm": 4.3049092292785645,
805
+ "learning_rate": 7.456542449925225e-06,
806
+ "loss": 0.4731,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 1.1181044957472661,
811
+ "grad_norm": 8.405867576599121,
812
+ "learning_rate": 7.409707905092246e-06,
813
+ "loss": 0.4842,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.1278250303766708,
818
+ "grad_norm": 3.693899393081665,
819
+ "learning_rate": 7.362596331570554e-06,
820
+ "loss": 0.478,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 1.1375455650060753,
825
+ "grad_norm": 4.493783950805664,
826
+ "learning_rate": 7.315213145476109e-06,
827
+ "loss": 0.4683,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 1.14726609963548,
832
+ "grad_norm": 4.062183380126953,
833
+ "learning_rate": 7.267563794150424e-06,
834
+ "loss": 0.4696,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 1.1569866342648845,
839
+ "grad_norm": 4.371154308319092,
840
+ "learning_rate": 7.2196537555343284e-06,
841
+ "loss": 0.4815,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 1.1667071688942892,
846
+ "grad_norm": 5.894556999206543,
847
+ "learning_rate": 7.171488537538195e-06,
848
+ "loss": 0.4798,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 1.1764277035236939,
853
+ "grad_norm": 3.3999180793762207,
854
+ "learning_rate": 7.123073677408743e-06,
855
+ "loss": 0.4645,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 1.1861482381530983,
860
+ "grad_norm": 3.9849109649658203,
861
+ "learning_rate": 7.074414741092444e-06,
862
+ "loss": 0.4747,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 1.195868772782503,
867
+ "grad_norm": 8.96238899230957,
868
+ "learning_rate": 7.025517322595648e-06,
869
+ "loss": 0.4809,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 1.2055893074119077,
874
+ "grad_norm": 3.941241502761841,
875
+ "learning_rate": 6.976387043341472e-06,
876
+ "loss": 0.4753,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 1.2153098420413122,
881
+ "grad_norm": 4.701385021209717,
882
+ "learning_rate": 6.927029551523548e-06,
883
+ "loss": 0.4774,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 1.225030376670717,
888
+ "grad_norm": 4.075878620147705,
889
+ "learning_rate": 6.877450521456679e-06,
890
+ "loss": 0.4774,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 1.2347509113001216,
895
+ "grad_norm": 3.7492356300354004,
896
+ "learning_rate": 6.827655652924499e-06,
897
+ "loss": 0.4577,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 1.244471445929526,
902
+ "grad_norm": 3.856064558029175,
903
+ "learning_rate": 6.777650670524212e-06,
904
+ "loss": 0.4785,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.2541919805589308,
909
+ "grad_norm": 4.559633731842041,
910
+ "learning_rate": 6.72744132300847e-06,
911
+ "loss": 0.4734,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 1.2639125151883355,
916
+ "grad_norm": 3.9584572315216064,
917
+ "learning_rate": 6.677033382624467e-06,
918
+ "loss": 0.4792,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 1.27363304981774,
923
+ "grad_norm": 3.9753267765045166,
924
+ "learning_rate": 6.626432644450354e-06,
925
+ "loss": 0.4945,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 1.2833535844471446,
930
+ "grad_norm": 3.5308444499969482,
931
+ "learning_rate": 6.575644925729008e-06,
932
+ "loss": 0.4724,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 1.2930741190765493,
937
+ "grad_norm": 3.5413670539855957,
938
+ "learning_rate": 6.524676065199259e-06,
939
+ "loss": 0.4834,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 1.3027946537059538,
944
+ "grad_norm": 3.488835573196411,
945
+ "learning_rate": 6.473531922424654e-06,
946
+ "loss": 0.4731,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 1.3125151883353585,
951
+ "grad_norm": 4.209514617919922,
952
+ "learning_rate": 6.422218377119818e-06,
953
+ "loss": 0.4713,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 1.322235722964763,
958
+ "grad_norm": 4.186116695404053,
959
+ "learning_rate": 6.370741328474497e-06,
960
+ "loss": 0.4694,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 1.3319562575941677,
965
+ "grad_norm": 4.734013080596924,
966
+ "learning_rate": 6.31910669447537e-06,
967
+ "loss": 0.4844,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 1.3416767922235722,
972
+ "grad_norm": 3.7548201084136963,
973
+ "learning_rate": 6.267320411225699e-06,
974
+ "loss": 0.4897,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 1.3513973268529769,
979
+ "grad_norm": 5.411615371704102,
980
+ "learning_rate": 6.215388432262885e-06,
981
+ "loss": 0.489,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 1.3611178614823816,
986
+ "grad_norm": 4.5117411613464355,
987
+ "learning_rate": 6.163316727874032e-06,
988
+ "loss": 0.4762,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 1.370838396111786,
993
+ "grad_norm": 4.529521942138672,
994
+ "learning_rate": 6.111111284409587e-06,
995
+ "loss": 0.4856,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 1.3805589307411907,
1000
+ "grad_norm": 3.990785598754883,
1001
+ "learning_rate": 6.058778103595115e-06,
1002
+ "loss": 0.4719,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 1.3902794653705954,
1007
+ "grad_norm": 3.461073160171509,
1008
+ "learning_rate": 6.006323201841332e-06,
1009
+ "loss": 0.4762,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 1.4,
1014
+ "grad_norm": 4.177917003631592,
1015
+ "learning_rate": 5.953752609552428e-06,
1016
+ "loss": 0.4853,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 1.4097205346294046,
1021
+ "grad_norm": 4.377038478851318,
1022
+ "learning_rate": 5.9010723704327945e-06,
1023
+ "loss": 0.4766,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 1.4194410692588093,
1028
+ "grad_norm": 3.7444796562194824,
1029
+ "learning_rate": 5.848288540792213e-06,
1030
+ "loss": 0.4738,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 1.4291616038882138,
1035
+ "grad_norm": 3.8287205696105957,
1036
+ "learning_rate": 5.795407188849612e-06,
1037
+ "loss": 0.4686,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 1.4388821385176185,
1042
+ "grad_norm": 6.44314432144165,
1043
+ "learning_rate": 5.7424343940354275e-06,
1044
+ "loss": 0.4658,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 1.4486026731470232,
1049
+ "grad_norm": 3.9452617168426514,
1050
+ "learning_rate": 5.689376246292698e-06,
1051
+ "loss": 0.4713,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 1.4583232077764277,
1056
+ "grad_norm": 4.222135543823242,
1057
+ "learning_rate": 5.636238845376947e-06,
1058
+ "loss": 0.4685,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 1.4680437424058324,
1063
+ "grad_norm": 3.804692268371582,
1064
+ "learning_rate": 5.58302830015492e-06,
1065
+ "loss": 0.469,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 1.477764277035237,
1070
+ "grad_norm": 3.252633571624756,
1071
+ "learning_rate": 5.529750727902301e-06,
1072
+ "loss": 0.4773,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 1.4874848116646415,
1077
+ "grad_norm": 4.714046955108643,
1078
+ "learning_rate": 5.4764122536004406e-06,
1079
+ "loss": 0.482,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 1.4972053462940462,
1084
+ "grad_norm": 3.599266290664673,
1085
+ "learning_rate": 5.423019009232207e-06,
1086
+ "loss": 0.4662,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 1.506925880923451,
1091
+ "grad_norm": 4.187329292297363,
1092
+ "learning_rate": 5.369577133077033e-06,
1093
+ "loss": 0.4652,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 1.5166464155528554,
1098
+ "grad_norm": 3.5032341480255127,
1099
+ "learning_rate": 5.316092769005239e-06,
1100
+ "loss": 0.4834,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 1.5263669501822599,
1105
+ "grad_norm": 4.487483024597168,
1106
+ "learning_rate": 5.262572065771703e-06,
1107
+ "loss": 0.465,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 1.5360874848116648,
1112
+ "grad_norm": 4.465209484100342,
1113
+ "learning_rate": 5.209021176308992e-06,
1114
+ "loss": 0.4683,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 1.5458080194410693,
1119
+ "grad_norm": 3.7371511459350586,
1120
+ "learning_rate": 5.155446257019983e-06,
1121
+ "loss": 0.4716,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 1.5555285540704737,
1126
+ "grad_norm": 3.683544158935547,
1127
+ "learning_rate": 5.101853467070112e-06,
1128
+ "loss": 0.4761,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 1.5652490886998784,
1133
+ "grad_norm": 5.11771297454834,
1134
+ "learning_rate": 5.048248967679292e-06,
1135
+ "loss": 0.4766,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 1.5749696233292831,
1140
+ "grad_norm": 4.279435157775879,
1141
+ "learning_rate": 4.994638921413591e-06,
1142
+ "loss": 0.4789,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 1.5846901579586876,
1147
+ "grad_norm": 4.194601535797119,
1148
+ "learning_rate": 4.941029491476768e-06,
1149
+ "loss": 0.4657,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 1.5944106925880923,
1154
+ "grad_norm": 16.01555061340332,
1155
+ "learning_rate": 4.887426841001728e-06,
1156
+ "loss": 0.4727,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 1.604131227217497,
1161
+ "grad_norm": 4.629364013671875,
1162
+ "learning_rate": 4.833837132341982e-06,
1163
+ "loss": 0.4788,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 1.6138517618469015,
1168
+ "grad_norm": 4.278013229370117,
1169
+ "learning_rate": 4.780266526363206e-06,
1170
+ "loss": 0.473,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 1.6235722964763062,
1175
+ "grad_norm": 3.2145824432373047,
1176
+ "learning_rate": 4.726721181734958e-06,
1177
+ "loss": 0.4717,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 1.6332928311057109,
1182
+ "grad_norm": 4.674281120300293,
1183
+ "learning_rate": 4.673207254222671e-06,
1184
+ "loss": 0.4718,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 1.6430133657351154,
1189
+ "grad_norm": 4.432647705078125,
1190
+ "learning_rate": 4.619730895979938e-06,
1191
+ "loss": 0.4758,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 1.65273390036452,
1196
+ "grad_norm": 6.134150505065918,
1197
+ "learning_rate": 4.56629825484127e-06,
1198
+ "loss": 0.4776,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 1.6624544349939248,
1203
+ "grad_norm": 3.62800931930542,
1204
+ "learning_rate": 4.512915473615288e-06,
1205
+ "loss": 0.4597,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 1.6721749696233292,
1210
+ "grad_norm": 4.815770626068115,
1211
+ "learning_rate": 4.459588689378548e-06,
1212
+ "loss": 0.4724,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 1.681895504252734,
1217
+ "grad_norm": 4.476830005645752,
1218
+ "learning_rate": 4.406324032769987e-06,
1219
+ "loss": 0.4699,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 1.6916160388821386,
1224
+ "grad_norm": 4.451855659484863,
1225
+ "learning_rate": 4.3531276272861254e-06,
1226
+ "loss": 0.4723,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 1.701336573511543,
1231
+ "grad_norm": 3.466305732727051,
1232
+ "learning_rate": 4.300005588577091e-06,
1233
+ "loss": 0.4688,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 1.7110571081409478,
1238
+ "grad_norm": 4.952362537384033,
1239
+ "learning_rate": 4.246964023743537e-06,
1240
+ "loss": 0.4728,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 1.7207776427703525,
1245
+ "grad_norm": 5.363527774810791,
1246
+ "learning_rate": 4.194009030634556e-06,
1247
+ "loss": 0.4692,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 1.730498177399757,
1252
+ "grad_norm": 3.821661949157715,
1253
+ "learning_rate": 4.1411466971466345e-06,
1254
+ "loss": 0.4706,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 1.7402187120291615,
1259
+ "grad_norm": 4.455121040344238,
1260
+ "learning_rate": 4.088383100523786e-06,
1261
+ "loss": 0.4636,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 1.7499392466585664,
1266
+ "grad_norm": 3.9628641605377197,
1267
+ "learning_rate": 4.035724306658869e-06,
1268
+ "loss": 0.4744,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 1.7596597812879708,
1273
+ "grad_norm": 3.942005157470703,
1274
+ "learning_rate": 3.983176369396249e-06,
1275
+ "loss": 0.4844,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 1.7693803159173753,
1280
+ "grad_norm": 4.5945820808410645,
1281
+ "learning_rate": 3.9307453298358105e-06,
1282
+ "loss": 0.4691,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 1.77910085054678,
1287
+ "grad_norm": 3.7485504150390625,
1288
+ "learning_rate": 3.878437215638462e-06,
1289
+ "loss": 0.4679,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 1.7888213851761847,
1294
+ "grad_norm": 4.494779109954834,
1295
+ "learning_rate": 3.826258040333169e-06,
1296
+ "loss": 0.4781,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 1.7985419198055892,
1301
+ "grad_norm": 3.641651153564453,
1302
+ "learning_rate": 3.774213802625617e-06,
1303
+ "loss": 0.4726,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 1.808262454434994,
1308
+ "grad_norm": 4.123895168304443,
1309
+ "learning_rate": 3.7223104857085818e-06,
1310
+ "loss": 0.4617,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 1.8179829890643986,
1315
+ "grad_norm": 4.825061798095703,
1316
+ "learning_rate": 3.670554056574076e-06,
1317
+ "loss": 0.4832,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 1.827703523693803,
1322
+ "grad_norm": 3.8967978954315186,
1323
+ "learning_rate": 3.618950465327368e-06,
1324
+ "loss": 0.4793,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 1.8374240583232078,
1329
+ "grad_norm": 4.325230598449707,
1330
+ "learning_rate": 3.5675056445029265e-06,
1331
+ "loss": 0.4731,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 1.8471445929526125,
1336
+ "grad_norm": 4.8459343910217285,
1337
+ "learning_rate": 3.516225508382409e-06,
1338
+ "loss": 0.4651,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 1.856865127582017,
1343
+ "grad_norm": 4.086941719055176,
1344
+ "learning_rate": 3.4651159523147197e-06,
1345
+ "loss": 0.4698,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 1.8665856622114216,
1350
+ "grad_norm": 4.497838973999023,
1351
+ "learning_rate": 3.4141828520382735e-06,
1352
+ "loss": 0.4688,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 1.8763061968408263,
1357
+ "grad_norm": 4.377286911010742,
1358
+ "learning_rate": 3.363432063005487e-06,
1359
+ "loss": 0.4742,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 1.8860267314702308,
1364
+ "grad_norm": 4.47113037109375,
1365
+ "learning_rate": 3.3128694197096224e-06,
1366
+ "loss": 0.4831,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 1.8957472660996355,
1371
+ "grad_norm": 4.1656928062438965,
1372
+ "learning_rate": 3.2625007350140344e-06,
1373
+ "loss": 0.4681,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 1.9054678007290402,
1378
+ "grad_norm": 4.184291362762451,
1379
+ "learning_rate": 3.2123317994838925e-06,
1380
+ "loss": 0.4735,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 1.9151883353584447,
1385
+ "grad_norm": 4.275445938110352,
1386
+ "learning_rate": 3.162368380720492e-06,
1387
+ "loss": 0.4693,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 1.9249088699878494,
1392
+ "grad_norm": 4.3425068855285645,
1393
+ "learning_rate": 3.1126162226981727e-06,
1394
+ "loss": 0.4688,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 1.934629404617254,
1399
+ "grad_norm": 3.7065649032592773,
1400
+ "learning_rate": 3.063081045103986e-06,
1401
+ "loss": 0.4603,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 1.9443499392466586,
1406
+ "grad_norm": 4.646661281585693,
1407
+ "learning_rate": 3.01376854268013e-06,
1408
+ "loss": 0.4835,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 1.954070473876063,
1413
+ "grad_norm": 4.484701633453369,
1414
+ "learning_rate": 2.9646843845692657e-06,
1415
+ "loss": 0.4779,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 1.963791008505468,
1420
+ "grad_norm": 5.250178813934326,
1421
+ "learning_rate": 2.91583421366277e-06,
1422
+ "loss": 0.4792,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 1.9735115431348724,
1427
+ "grad_norm": 4.839537143707275,
1428
+ "learning_rate": 2.867223645952007e-06,
1429
+ "loss": 0.4717,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 1.983232077764277,
1434
+ "grad_norm": 4.47597074508667,
1435
+ "learning_rate": 2.818858269882699e-06,
1436
+ "loss": 0.4694,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 1.9929526123936816,
1441
+ "grad_norm": 4.061124801635742,
1442
+ "learning_rate": 2.770743645712455e-06,
1443
+ "loss": 0.4748,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 2.0029161603888213,
1448
+ "grad_norm": 2.0077168941497803,
1449
+ "learning_rate": 2.722885304871539e-06,
1450
+ "loss": 0.4654,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 2.012636695018226,
1455
+ "grad_norm": 2.1146748065948486,
1456
+ "learning_rate": 2.6752887493269676e-06,
1457
+ "loss": 0.4666,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 2.0223572296476306,
1462
+ "grad_norm": 2.04209303855896,
1463
+ "learning_rate": 2.627959450949975e-06,
1464
+ "loss": 0.4716,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 2.032077764277035,
1469
+ "grad_norm": 1.962570071220398,
1470
+ "learning_rate": 2.580902850886947e-06,
1471
+ "loss": 0.4761,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 2.04179829890644,
1476
+ "grad_norm": 2.0052075386047363,
1477
+ "learning_rate": 2.5341243589339005e-06,
1478
+ "loss": 0.4608,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 2.0515188335358445,
1483
+ "grad_norm": 2.1367218494415283,
1484
+ "learning_rate": 2.487629352914531e-06,
1485
+ "loss": 0.4748,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 2.061239368165249,
1490
+ "grad_norm": 3.518221855163574,
1491
+ "learning_rate": 2.4414231780619825e-06,
1492
+ "loss": 0.4676,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 2.070959902794654,
1497
+ "grad_norm": 2.140087604522705,
1498
+ "learning_rate": 2.395511146404318e-06,
1499
+ "loss": 0.46,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 2.0806804374240584,
1504
+ "grad_norm": 2.2499241828918457,
1505
+ "learning_rate": 2.34989853615385e-06,
1506
+ "loss": 0.4628,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 2.090400972053463,
1511
+ "grad_norm": 2.151681661605835,
1512
+ "learning_rate": 2.3045905911003253e-06,
1513
+ "loss": 0.4755,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 2.1001215066828673,
1518
+ "grad_norm": 2.0793325901031494,
1519
+ "learning_rate": 2.259592520008086e-06,
1520
+ "loss": 0.4768,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 2.1098420413122723,
1525
+ "grad_norm": 2.1793599128723145,
1526
+ "learning_rate": 2.2149094960172434e-06,
1527
+ "loss": 0.456,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 2.1195625759416767,
1532
+ "grad_norm": 1.8569040298461914,
1533
+ "learning_rate": 2.170546656048966e-06,
1534
+ "loss": 0.4679,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 2.129283110571081,
1539
+ "grad_norm": 2.157439708709717,
1540
+ "learning_rate": 2.1265091002149167e-06,
1541
+ "loss": 0.4683,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 2.139003645200486,
1546
+ "grad_norm": 2.0931077003479004,
1547
+ "learning_rate": 2.082801891230916e-06,
1548
+ "loss": 0.4718,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 2.1487241798298906,
1553
+ "grad_norm": 2.0878078937530518,
1554
+ "learning_rate": 2.039430053834931e-06,
1555
+ "loss": 0.4768,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 2.158444714459295,
1560
+ "grad_norm": 2.0429890155792236,
1561
+ "learning_rate": 1.9963985742094e-06,
1562
+ "loss": 0.4782,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 2.1681652490887,
1567
+ "grad_norm": 2.038283586502075,
1568
+ "learning_rate": 1.9537123994080113e-06,
1569
+ "loss": 0.4607,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 2.1778857837181045,
1574
+ "grad_norm": 2.2046799659729004,
1575
+ "learning_rate": 1.911376436786963e-06,
1576
+ "loss": 0.47,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 2.187606318347509,
1581
+ "grad_norm": 2.4161760807037354,
1582
+ "learning_rate": 1.869395553440807e-06,
1583
+ "loss": 0.4715,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 2.197326852976914,
1588
+ "grad_norm": 2.080486297607422,
1589
+ "learning_rate": 1.8277745756428973e-06,
1590
+ "loss": 0.4606,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 2.2070473876063184,
1595
+ "grad_norm": 2.1269888877868652,
1596
+ "learning_rate": 1.786518288290563e-06,
1597
+ "loss": 0.4581,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 2.216767922235723,
1602
+ "grad_norm": 2.1676316261291504,
1603
+ "learning_rate": 1.7456314343549946e-06,
1604
+ "loss": 0.457,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 2.2264884568651278,
1609
+ "grad_norm": 2.3082780838012695,
1610
+ "learning_rate": 1.7051187143359975e-06,
1611
+ "loss": 0.4738,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 2.2362089914945322,
1616
+ "grad_norm": 2.100372076034546,
1617
+ "learning_rate": 1.6649847857215945e-06,
1618
+ "loss": 0.4716,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 2.2459295261239367,
1623
+ "grad_norm": 2.2547926902770996,
1624
+ "learning_rate": 1.6252342624525802e-06,
1625
+ "loss": 0.466,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 2.2556500607533416,
1630
+ "grad_norm": 2.1985204219818115,
1631
+ "learning_rate": 1.5858717143920988e-06,
1632
+ "loss": 0.4701,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 2.265370595382746,
1637
+ "grad_norm": 2.1563034057617188,
1638
+ "learning_rate": 1.5469016668002652e-06,
1639
+ "loss": 0.4685,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 2.2750911300121506,
1644
+ "grad_norm": 2.214901924133301,
1645
+ "learning_rate": 1.5083285998139308e-06,
1646
+ "loss": 0.458,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 2.2848116646415555,
1651
+ "grad_norm": 2.1835556030273438,
1652
+ "learning_rate": 1.4701569479316252e-06,
1653
+ "loss": 0.4624,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 2.29453219927096,
1658
+ "grad_norm": 1.9954426288604736,
1659
+ "learning_rate": 1.4323910995037576e-06,
1660
+ "loss": 0.4641,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 2.3042527339003644,
1665
+ "grad_norm": 2.121554136276245,
1666
+ "learning_rate": 1.3950353962281081e-06,
1667
+ "loss": 0.4763,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 2.313973268529769,
1672
+ "grad_norm": 2.168081760406494,
1673
+ "learning_rate": 1.358094132650699e-06,
1674
+ "loss": 0.4763,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 2.323693803159174,
1679
+ "grad_norm": 2.023455858230591,
1680
+ "learning_rate": 1.3215715556720722e-06,
1681
+ "loss": 0.4662,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 2.3334143377885783,
1686
+ "grad_norm": 2.124724864959717,
1687
+ "learning_rate": 1.285471864059053e-06,
1688
+ "loss": 0.4777,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 2.3431348724179832,
1693
+ "grad_norm": 2.163512945175171,
1694
+ "learning_rate": 1.2497992079620408e-06,
1695
+ "loss": 0.4714,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 2.3528554070473877,
1700
+ "grad_norm": 2.237823247909546,
1701
+ "learning_rate": 1.2145576884378995e-06,
1702
+ "loss": 0.459,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 2.362575941676792,
1707
+ "grad_norm": 2.2328405380249023,
1708
+ "learning_rate": 1.179751356978483e-06,
1709
+ "loss": 0.4678,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 2.3722964763061967,
1714
+ "grad_norm": 2.189445972442627,
1715
+ "learning_rate": 1.1453842150448513e-06,
1716
+ "loss": 0.469,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 2.3820170109356016,
1721
+ "grad_norm": 2.0778281688690186,
1722
+ "learning_rate": 1.1114602136072706e-06,
1723
+ "loss": 0.465,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 2.391737545565006,
1728
+ "grad_norm": 1.9697000980377197,
1729
+ "learning_rate": 1.0779832526909683e-06,
1730
+ "loss": 0.4806,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 2.4014580801944105,
1735
+ "grad_norm": 2.2064828872680664,
1736
+ "learning_rate": 1.0449571809277942e-06,
1737
+ "loss": 0.4572,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 2.4111786148238155,
1742
+ "grad_norm": 1.9824655055999756,
1743
+ "learning_rate": 1.0123857951137534e-06,
1744
+ "loss": 0.4551,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 2.42089914945322,
1749
+ "grad_norm": 2.0561132431030273,
1750
+ "learning_rate": 9.802728397725224e-07,
1751
+ "loss": 0.4708,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 2.4306196840826244,
1756
+ "grad_norm": 2.374835729598999,
1757
+ "learning_rate": 9.486220067249613e-07,
1758
+ "loss": 0.4708,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 2.4403402187120293,
1763
+ "grad_norm": 2.1538679599761963,
1764
+ "learning_rate": 9.174369346646888e-07,
1765
+ "loss": 0.4774,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 2.450060753341434,
1770
+ "grad_norm": 2.8585407733917236,
1771
+ "learning_rate": 8.867212087397626e-07,
1772
+ "loss": 0.4733,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 2.4597812879708383,
1777
+ "grad_norm": 2.1649951934814453,
1778
+ "learning_rate": 8.564783601405225e-07,
1779
+ "loss": 0.4663,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 2.469501822600243,
1784
+ "grad_norm": 2.2239134311676025,
1785
+ "learning_rate": 8.267118656936318e-07,
1786
+ "loss": 0.4698,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 2.4792223572296477,
1791
+ "grad_norm": 2.1840627193450928,
1792
+ "learning_rate": 7.974251474623623e-07,
1793
+ "loss": 0.4562,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 2.488942891859052,
1798
+ "grad_norm": 2.260507583618164,
1799
+ "learning_rate": 7.686215723531903e-07,
1800
+ "loss": 0.4764,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 2.4986634264884566,
1805
+ "grad_norm": 2.27022647857666,
1806
+ "learning_rate": 7.4030445172872e-07,
1807
+ "loss": 0.463,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 2.5083839611178615,
1812
+ "grad_norm": 2.080825090408325,
1813
+ "learning_rate": 7.124770410269971e-07,
1814
+ "loss": 0.4645,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 2.518104495747266,
1819
+ "grad_norm": 2.2736544609069824,
1820
+ "learning_rate": 6.851425393872535e-07,
1821
+ "loss": 0.4736,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 2.527825030376671,
1826
+ "grad_norm": 2.116166591644287,
1827
+ "learning_rate": 6.58304089282123e-07,
1828
+ "loss": 0.469,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 2.5375455650060754,
1833
+ "grad_norm": 2.1004207134246826,
1834
+ "learning_rate": 6.319647761563685e-07,
1835
+ "loss": 0.4774,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 2.54726609963548,
1840
+ "grad_norm": 2.0980539321899414,
1841
+ "learning_rate": 6.061276280721729e-07,
1842
+ "loss": 0.4585,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 2.5569866342648844,
1847
+ "grad_norm": 2.199542760848999,
1848
+ "learning_rate": 5.807956153610189e-07,
1849
+ "loss": 0.4787,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 2.5667071688942893,
1854
+ "grad_norm": 2.0425212383270264,
1855
+ "learning_rate": 5.559716502822087e-07,
1856
+ "loss": 0.4746,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 2.5764277035236938,
1861
+ "grad_norm": 2.1126480102539062,
1862
+ "learning_rate": 5.316585866880635e-07,
1863
+ "loss": 0.4667,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 2.5861482381530987,
1868
+ "grad_norm": 2.1631975173950195,
1869
+ "learning_rate": 5.078592196958282e-07,
1870
+ "loss": 0.4607,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 2.595868772782503,
1875
+ "grad_norm": 2.2496447563171387,
1876
+ "learning_rate": 4.845762853663416e-07,
1877
+ "loss": 0.4664,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 2.6055893074119076,
1882
+ "grad_norm": 2.1951189041137695,
1883
+ "learning_rate": 4.6181246038948524e-07,
1884
+ "loss": 0.4606,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 2.615309842041312,
1889
+ "grad_norm": 2.1003565788269043,
1890
+ "learning_rate": 4.395703617764624e-07,
1891
+ "loss": 0.4607,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 2.625030376670717,
1896
+ "grad_norm": 2.2774477005004883,
1897
+ "learning_rate": 4.1785254655893615e-07,
1898
+ "loss": 0.4635,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 2.6347509113001215,
1903
+ "grad_norm": 2.1457698345184326,
1904
+ "learning_rate": 3.9666151149506506e-07,
1905
+ "loss": 0.4658,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 2.644471445929526,
1910
+ "grad_norm": 2.298901319503784,
1911
+ "learning_rate": 3.75999692782465e-07,
1912
+ "loss": 0.4697,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 2.654191980558931,
1917
+ "grad_norm": 2.227304220199585,
1918
+ "learning_rate": 3.558694657781386e-07,
1919
+ "loss": 0.4815,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 2.6639125151883354,
1924
+ "grad_norm": 2.645914316177368,
1925
+ "learning_rate": 3.362731447253931e-07,
1926
+ "loss": 0.4674,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 2.67363304981774,
1931
+ "grad_norm": 2.4246609210968018,
1932
+ "learning_rate": 3.172129824877862e-07,
1933
+ "loss": 0.4735,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 2.6833535844471443,
1938
+ "grad_norm": 2.0741360187530518,
1939
+ "learning_rate": 2.9869117029012905e-07,
1940
+ "loss": 0.4663,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 2.6930741190765493,
1945
+ "grad_norm": 2.19986629486084,
1946
+ "learning_rate": 2.807098374665773e-07,
1947
+ "loss": 0.4607,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 2.7027946537059537,
1952
+ "grad_norm": 2.199263572692871,
1953
+ "learning_rate": 2.632710512158332e-07,
1954
+ "loss": 0.4633,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 2.7125151883353587,
1959
+ "grad_norm": 5.237627029418945,
1960
+ "learning_rate": 2.4637681636349106e-07,
1961
+ "loss": 0.4732,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 2.722235722964763,
1966
+ "grad_norm": 2.1454434394836426,
1967
+ "learning_rate": 2.3002907513156315e-07,
1968
+ "loss": 0.4732,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 2.7319562575941676,
1973
+ "grad_norm": 2.4052484035491943,
1974
+ "learning_rate": 2.1422970691518276e-07,
1975
+ "loss": 0.4641,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 2.741676792223572,
1980
+ "grad_norm": 3.7976326942443848,
1981
+ "learning_rate": 1.9898052806655356e-07,
1982
+ "loss": 0.4616,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 2.751397326852977,
1987
+ "grad_norm": 2.182563066482544,
1988
+ "learning_rate": 1.8428329168612703e-07,
1989
+ "loss": 0.4779,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 2.7611178614823815,
1994
+ "grad_norm": 2.0911543369293213,
1995
+ "learning_rate": 1.701396874210659e-07,
1996
+ "loss": 0.4717,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 2.7708383961117864,
2001
+ "grad_norm": 2.4781322479248047,
2002
+ "learning_rate": 1.5655134127099292e-07,
2003
+ "loss": 0.4767,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 2.780558930741191,
2008
+ "grad_norm": 2.073251485824585,
2009
+ "learning_rate": 1.435198154010592e-07,
2010
+ "loss": 0.4761,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 2.7902794653705953,
2015
+ "grad_norm": 2.240455150604248,
2016
+ "learning_rate": 1.3104660796235402e-07,
2017
+ "loss": 0.4694,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 2.8,
2022
+ "grad_norm": 3.2606217861175537,
2023
+ "learning_rate": 1.1913315291967209e-07,
2024
+ "loss": 0.4778,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 2.8097205346294047,
2029
+ "grad_norm": 2.1772541999816895,
2030
+ "learning_rate": 1.0778081988665978e-07,
2031
+ "loss": 0.454,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 2.819441069258809,
2036
+ "grad_norm": 2.2045230865478516,
2037
+ "learning_rate": 9.699091396835725e-08,
2038
+ "loss": 0.4542,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 2.8291616038882137,
2043
+ "grad_norm": 2.1804275512695312,
2044
+ "learning_rate": 8.676467561116064e-08,
2045
+ "loss": 0.4759,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 2.8388821385176186,
2050
+ "grad_norm": 2.245986223220825,
2051
+ "learning_rate": 7.710328046021675e-08,
2052
+ "loss": 0.4662,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 2.848602673147023,
2057
+ "grad_norm": 2.1786446571350098,
2058
+ "learning_rate": 6.800783922426557e-08,
2059
+ "loss": 0.4814,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 2.8583232077764276,
2064
+ "grad_norm": 2.142780303955078,
2065
+ "learning_rate": 5.947939754794796e-08,
2066
+ "loss": 0.4786,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 2.8680437424058325,
2071
+ "grad_norm": 2.2657175064086914,
2072
+ "learning_rate": 5.151893589159684e-08,
2073
+ "loss": 0.4722,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 2.877764277035237,
2078
+ "grad_norm": 2.4200682640075684,
2079
+ "learning_rate": 4.4127369418518474e-08,
2080
+ "loss": 0.4643,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 2.8874848116646414,
2085
+ "grad_norm": 2.1785573959350586,
2086
+ "learning_rate": 3.7305547889783244e-08,
2087
+ "loss": 0.4529,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 2.8972053462940464,
2092
+ "grad_norm": 2.2167816162109375,
2093
+ "learning_rate": 3.1054255566532746e-08,
2094
+ "loss": 0.4682,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 2.906925880923451,
2099
+ "grad_norm": 2.4332900047302246,
2100
+ "learning_rate": 2.537421111981908e-08,
2101
+ "loss": 0.4693,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 2.9166464155528553,
2106
+ "grad_norm": 2.178539514541626,
2107
+ "learning_rate": 2.026606754798266e-08,
2108
+ "loss": 0.4621,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 2.92636695018226,
2113
+ "grad_norm": 2.165919065475464,
2114
+ "learning_rate": 1.5730412101583882e-08,
2115
+ "loss": 0.4633,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 2.9360874848116647,
2120
+ "grad_norm": 2.2715532779693604,
2121
+ "learning_rate": 1.176776621588771e-08,
2122
+ "loss": 0.4776,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 2.945808019441069,
2127
+ "grad_norm": 2.2068674564361572,
2128
+ "learning_rate": 8.378585450918853e-09,
2129
+ "loss": 0.4668,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 2.955528554070474,
2134
+ "grad_norm": 2.124382495880127,
2135
+ "learning_rate": 5.563259439089752e-09,
2136
+ "loss": 0.4639,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 2.9652490886998786,
2141
+ "grad_norm": 2.2651636600494385,
2142
+ "learning_rate": 3.322111840405318e-09,
2143
+ "loss": 0.4561,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 2.974969623329283,
2148
+ "grad_norm": 2.188660144805908,
2149
+ "learning_rate": 1.6554003052554612e-09,
2150
+ "loss": 0.4633,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 2.9846901579586875,
2155
+ "grad_norm": 2.2163050174713135,
2156
+ "learning_rate": 5.633164447932382e-10,
2157
+ "loss": 0.4756,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 2.9944106925880924,
2162
+ "grad_norm": 2.2273592948913574,
2163
+ "learning_rate": 4.598580890802229e-11,
2164
+ "loss": 0.4751,
2165
+ "step": 3080
2166
+ }
2167
+ ],
2168
+ "logging_steps": 10,
2169
+ "max_steps": 3084,
2170
+ "num_input_tokens_seen": 0,
2171
+ "num_train_epochs": 3,
2172
+ "save_steps": 500,
2173
+ "stateful_callbacks": {
2174
+ "TrainerControl": {
2175
+ "args": {
2176
+ "should_epoch_stop": false,
2177
+ "should_evaluate": false,
2178
+ "should_log": false,
2179
+ "should_save": true,
2180
+ "should_training_stop": true
2181
+ },
2182
+ "attributes": {}
2183
+ }
2184
+ },
2185
+ "total_flos": 7.827564814489616e+19,
2186
+ "train_batch_size": 1,
2187
+ "trial_name": null,
2188
+ "trial_params": null
2189
+ }
checkpoint-3084/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af366e8bf979151cfc46d09de7384543758bd91e2505e308216c4287ab014007
3
+ size 6456
checkpoint-3084/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
4
+ "architectures": [
5
+ "GraniteForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.1,
9
+ "attention_multiplier": 0.0078125,
10
+ "bos_token_id": 0,
11
+ "embedding_multiplier": 12.0,
12
+ "eos_token_id": 0,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 12800,
17
+ "logits_scaling": 16.0,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "granite",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 40,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 0,
25
+ "quantization_config": {
26
+ "_load_in_4bit": false,
27
+ "_load_in_8bit": true,
28
+ "bnb_4bit_compute_dtype": "float32",
29
+ "bnb_4bit_quant_storage": "uint8",
30
+ "bnb_4bit_quant_type": "fp4",
31
+ "bnb_4bit_use_double_quant": false,
32
+ "llm_int8_enable_fp32_cpu_offload": false,
33
+ "llm_int8_has_fp16_weight": false,
34
+ "llm_int8_skip_modules": null,
35
+ "llm_int8_threshold": 6.0,
36
+ "load_in_4bit": false,
37
+ "load_in_8bit": true,
38
+ "quant_method": "bitsandbytes"
39
+ },
40
+ "residual_multiplier": 0.22,
41
+ "rms_norm_eps": 1e-05,
42
+ "rope_scaling": null,
43
+ "rope_theta": 10000000.0,
44
+ "tie_word_embeddings": true,
45
+ "torch_dtype": "bfloat16",
46
+ "transformers_version": "4.46.3",
47
+ "use_cache": false,
48
+ "vocab_size": 49184
49
+ }
merged/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
merged/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
3
+ "architectures": [
4
+ "GraniteForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.1,
8
+ "attention_multiplier": 0.0078125,
9
+ "bos_token_id": 0,
10
+ "embedding_multiplier": 12.0,
11
+ "eos_token_id": 0,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 12800,
16
+ "logits_scaling": 16.0,
17
+ "max_position_embeddings": 131072,
18
+ "mlp_bias": false,
19
+ "model_type": "granite",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 40,
22
+ "num_key_value_heads": 8,
23
+ "pad_token_id": 0,
24
+ "residual_multiplier": 0.22,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000000.0,
28
+ "tie_word_embeddings": true,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.3",
31
+ "use_cache": false,
32
+ "vocab_size": 49184
33
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "eos_token_id": 0,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.46.3"
8
+ }
merged/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
merged/pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:071e61d94737f02b8427c4eef727368d2d44e28b9b779fd2f09ff76e380d7059
3
+ size 4974924377
merged/pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f5633cbbf0976809272118af68212888d758331af297257007815641ca8470
3
+ size 4991474682
merged/pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35ce5179842eca955de0acca571f58ba2722b3133ecd33a380bdb660baf684f4
3
+ size 4970487165
merged/pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b986b2865f140d722928c3984b1d27ba31313868bdd49d62df533e5bb097a1
3
+ size 1405177130
merged/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16341934080
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
261
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
262
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
263
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
264
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
265
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
266
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
267
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
268
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
269
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
270
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
271
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
272
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
273
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
274
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
275
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
276
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
277
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
278
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
279
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
280
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
281
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
282
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
283
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
284
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
285
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
286
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
287
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
288
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
289
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
290
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
291
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
292
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
293
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
294
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
295
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
296
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
297
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
298
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
299
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
300
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
301
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
302
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
303
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
304
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
305
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
306
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
307
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
308
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
309
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
310
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
311
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
312
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
313
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
314
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
315
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
316
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
317
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
318
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
319
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
320
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
321
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
322
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
323
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
324
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
325
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
326
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
327
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
328
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
329
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
330
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
331
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
332
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
333
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
334
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
335
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
336
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
337
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
338
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
339
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
340
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
341
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
342
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
343
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
344
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
345
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
346
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
347
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
348
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
349
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
350
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
351
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
352
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
353
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
354
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
355
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
356
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
357
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
358
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
359
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
360
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
361
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
362
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
363
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
364
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
365
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
366
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
367
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
368
+ "model.norm.weight": "pytorch_model-00004-of-00004.bin"
369
+ }
370
+ }
merged/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
merged/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
merged/tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
merged/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff