Initial model upload
Browse files- .ipynb_checkpoints/README-checkpoint.md +141 -0
- README.md +141 -0
- adapter_config.json +34 -0
- adapter_model.bin +3 -0
- added_tokens.json +5 -0
- checkpoint-3084/README.md +202 -0
- checkpoint-3084/adapter_config.json +34 -0
- checkpoint-3084/adapter_model.safetensors +3 -0
- checkpoint-3084/added_tokens.json +5 -0
- checkpoint-3084/merges.txt +0 -0
- checkpoint-3084/optimizer.pt +3 -0
- checkpoint-3084/rng_state_0.pth +3 -0
- checkpoint-3084/rng_state_1.pth +3 -0
- checkpoint-3084/rng_state_2.pth +3 -0
- checkpoint-3084/rng_state_3.pth +3 -0
- checkpoint-3084/rng_state_4.pth +3 -0
- checkpoint-3084/rng_state_5.pth +3 -0
- checkpoint-3084/rng_state_6.pth +3 -0
- checkpoint-3084/rng_state_7.pth +3 -0
- checkpoint-3084/scheduler.pt +3 -0
- checkpoint-3084/special_tokens_map.json +35 -0
- checkpoint-3084/tokenizer.json +0 -0
- checkpoint-3084/tokenizer_config.json +199 -0
- checkpoint-3084/trainer_state.json +2189 -0
- checkpoint-3084/training_args.bin +3 -0
- checkpoint-3084/vocab.json +0 -0
- config.json +49 -0
- merged/added_tokens.json +5 -0
- merged/config.json +33 -0
- merged/generation_config.json +8 -0
- merged/merges.txt +0 -0
- merged/pytorch_model-00001-of-00004.bin +3 -0
- merged/pytorch_model-00002-of-00004.bin +3 -0
- merged/pytorch_model-00003-of-00004.bin +3 -0
- merged/pytorch_model-00004-of-00004.bin +3 -0
- merged/pytorch_model.bin.index.json +370 -0
- merged/special_tokens_map.json +35 -0
- merged/tokenizer.json +0 -0
- merged/tokenizer_config.json +199 -0
- merged/vocab.json +0 -0
- merges.txt +0 -0
- special_tokens_map.json +35 -0
- tokenizer.json +0 -0
- tokenizer_config.json +199 -0
- vocab.json +0 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: ibm-granite/granite-3.1-8b-instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.5.2`
|
19 |
+
```yaml
|
20 |
+
base_model: ibm-granite/granite-3.1-8b-instruct
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
tokenizer_type: AutoTokenizer
|
23 |
+
|
24 |
+
resize_token_embeddings_to_32x: true
|
25 |
+
load_in_8bit: true
|
26 |
+
load_in_4bit: false
|
27 |
+
strict: false
|
28 |
+
|
29 |
+
datasets:
|
30 |
+
- path: /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl
|
31 |
+
type: chat_template
|
32 |
+
chat_template: tokenizer_default
|
33 |
+
field_messages: conversations
|
34 |
+
message_field_role: role
|
35 |
+
message_field_content: value
|
36 |
+
dataset_prepared_path: last_run_prepared_sft
|
37 |
+
|
38 |
+
val_set_size: 0
|
39 |
+
sequence_len: 8192
|
40 |
+
sample_packing: false
|
41 |
+
pad_to_sequence_len: true
|
42 |
+
eval_sample_packing: false
|
43 |
+
output_dir: /home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
|
44 |
+
|
45 |
+
wandb_project: null
|
46 |
+
wandb_entity: null
|
47 |
+
wandb_watch: null
|
48 |
+
wandb_name: null
|
49 |
+
wandb_log_model: null
|
50 |
+
|
51 |
+
adapter: lora
|
52 |
+
lora_model_dir:
|
53 |
+
lora_r: 32
|
54 |
+
lora_alpha: 16
|
55 |
+
lora_dropout: 0.05
|
56 |
+
lora_target_linear: true
|
57 |
+
lora_fan_in_fan_out:
|
58 |
+
|
59 |
+
gradient_accumulation_steps: 8
|
60 |
+
micro_batch_size: 1
|
61 |
+
eval_batch_size: 1
|
62 |
+
num_epochs: 3
|
63 |
+
optimizer: adamw_bnb_8bit
|
64 |
+
lr_scheduler: cosine
|
65 |
+
learning_rate: 1e-05
|
66 |
+
|
67 |
+
max_grad_norm: 1.0
|
68 |
+
logging_steps: 10
|
69 |
+
|
70 |
+
train_on_inputs: false
|
71 |
+
group_by_length: false
|
72 |
+
|
73 |
+
bf16: auto
|
74 |
+
fp16:
|
75 |
+
tf32: false
|
76 |
+
|
77 |
+
gradient_checkpointing: true
|
78 |
+
gradient_checkpointing_kwargs:
|
79 |
+
use_reentrant: false
|
80 |
+
early_stopping_patience:
|
81 |
+
resume_from_checkpoint:
|
82 |
+
local_rank:
|
83 |
+
xformers_attention:
|
84 |
+
flash_attention: true
|
85 |
+
warmup_ratio: 0.05
|
86 |
+
eval_steps:
|
87 |
+
save_strategy: epoch
|
88 |
+
eval_table_size:
|
89 |
+
num_processes: 8
|
90 |
+
deepspeed:
|
91 |
+
weight_decay: 0.0
|
92 |
+
```
|
93 |
+
|
94 |
+
</details><br>
|
95 |
+
|
96 |
+
# home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.0-8b-lora
|
97 |
+
|
98 |
+
This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl dataset.
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Intended uses & limitations
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training and evaluation data
|
109 |
+
|
110 |
+
More information needed
|
111 |
+
|
112 |
+
## Training procedure
|
113 |
+
|
114 |
+
### Training hyperparameters
|
115 |
+
|
116 |
+
The following hyperparameters were used during training:
|
117 |
+
- learning_rate: 1e-05
|
118 |
+
- train_batch_size: 1
|
119 |
+
- eval_batch_size: 1
|
120 |
+
- seed: 42
|
121 |
+
- distributed_type: multi-GPU
|
122 |
+
- num_devices: 8
|
123 |
+
- gradient_accumulation_steps: 8
|
124 |
+
- total_train_batch_size: 64
|
125 |
+
- total_eval_batch_size: 8
|
126 |
+
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
127 |
+
- lr_scheduler_type: cosine
|
128 |
+
- lr_scheduler_warmup_steps: 154
|
129 |
+
- num_epochs: 3
|
130 |
+
|
131 |
+
### Training results
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- PEFT 0.13.2
|
138 |
+
- Transformers 4.46.3
|
139 |
+
- Pytorch 2.3.1+cu121
|
140 |
+
- Datasets 3.1.0
|
141 |
+
- Tokenizers 0.20.3
|
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: ibm-granite/granite-3.1-8b-instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.5.2`
|
19 |
+
```yaml
|
20 |
+
base_model: ibm-granite/granite-3.1-8b-instruct
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
tokenizer_type: AutoTokenizer
|
23 |
+
|
24 |
+
resize_token_embeddings_to_32x: true
|
25 |
+
load_in_8bit: true
|
26 |
+
load_in_4bit: false
|
27 |
+
strict: false
|
28 |
+
|
29 |
+
datasets:
|
30 |
+
- path: /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl
|
31 |
+
type: chat_template
|
32 |
+
chat_template: tokenizer_default
|
33 |
+
field_messages: conversations
|
34 |
+
message_field_role: role
|
35 |
+
message_field_content: value
|
36 |
+
dataset_prepared_path: last_run_prepared_sft
|
37 |
+
|
38 |
+
val_set_size: 0
|
39 |
+
sequence_len: 8192
|
40 |
+
sample_packing: false
|
41 |
+
pad_to_sequence_len: true
|
42 |
+
eval_sample_packing: false
|
43 |
+
output_dir: /home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.1-8b-lora
|
44 |
+
|
45 |
+
wandb_project: null
|
46 |
+
wandb_entity: null
|
47 |
+
wandb_watch: null
|
48 |
+
wandb_name: null
|
49 |
+
wandb_log_model: null
|
50 |
+
|
51 |
+
adapter: lora
|
52 |
+
lora_model_dir:
|
53 |
+
lora_r: 32
|
54 |
+
lora_alpha: 16
|
55 |
+
lora_dropout: 0.05
|
56 |
+
lora_target_linear: true
|
57 |
+
lora_fan_in_fan_out:
|
58 |
+
|
59 |
+
gradient_accumulation_steps: 8
|
60 |
+
micro_batch_size: 1
|
61 |
+
eval_batch_size: 1
|
62 |
+
num_epochs: 3
|
63 |
+
optimizer: adamw_bnb_8bit
|
64 |
+
lr_scheduler: cosine
|
65 |
+
learning_rate: 1e-05
|
66 |
+
|
67 |
+
max_grad_norm: 1.0
|
68 |
+
logging_steps: 10
|
69 |
+
|
70 |
+
train_on_inputs: false
|
71 |
+
group_by_length: false
|
72 |
+
|
73 |
+
bf16: auto
|
74 |
+
fp16:
|
75 |
+
tf32: false
|
76 |
+
|
77 |
+
gradient_checkpointing: true
|
78 |
+
gradient_checkpointing_kwargs:
|
79 |
+
use_reentrant: false
|
80 |
+
early_stopping_patience:
|
81 |
+
resume_from_checkpoint:
|
82 |
+
local_rank:
|
83 |
+
xformers_attention:
|
84 |
+
flash_attention: true
|
85 |
+
warmup_ratio: 0.05
|
86 |
+
eval_steps:
|
87 |
+
save_strategy: epoch
|
88 |
+
eval_table_size:
|
89 |
+
num_processes: 8
|
90 |
+
deepspeed:
|
91 |
+
weight_decay: 0.0
|
92 |
+
```
|
93 |
+
|
94 |
+
</details><br>
|
95 |
+
|
96 |
+
# home/ec2-user/SageMaker/task_decomposition/trained_models/granite-math-plans-3.0-8b-lora
|
97 |
+
|
98 |
+
This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the /home/ec2-user/SageMaker/task_decomposition/data/task_decomposition_training_data_math.jsonl dataset.
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Intended uses & limitations
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training and evaluation data
|
109 |
+
|
110 |
+
More information needed
|
111 |
+
|
112 |
+
## Training procedure
|
113 |
+
|
114 |
+
### Training hyperparameters
|
115 |
+
|
116 |
+
The following hyperparameters were used during training:
|
117 |
+
- learning_rate: 1e-05
|
118 |
+
- train_batch_size: 1
|
119 |
+
- eval_batch_size: 1
|
120 |
+
- seed: 42
|
121 |
+
- distributed_type: multi-GPU
|
122 |
+
- num_devices: 8
|
123 |
+
- gradient_accumulation_steps: 8
|
124 |
+
- total_train_batch_size: 64
|
125 |
+
- total_eval_batch_size: 8
|
126 |
+
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
127 |
+
- lr_scheduler_type: cosine
|
128 |
+
- lr_scheduler_warmup_steps: 154
|
129 |
+
- num_epochs: 3
|
130 |
+
|
131 |
+
### Training results
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- PEFT 0.13.2
|
138 |
+
- Transformers 4.46.3
|
139 |
+
- Pytorch 2.3.1+cu121
|
140 |
+
- Datasets 3.1.0
|
141 |
+
- Tokenizers 0.20.3
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"k_proj",
|
24 |
+
"o_proj",
|
25 |
+
"down_proj",
|
26 |
+
"up_proj",
|
27 |
+
"q_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a78a4b83edd30daeebc4160a94362b8d9e82de7f4c73fdd288a8c139902b6ce
|
3 |
+
size 798955662
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_role|>": 49153,
|
3 |
+
"<|start_of_role|>": 49152,
|
4 |
+
"<|tool_call|>": 49154
|
5 |
+
}
|
checkpoint-3084/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ibm-granite/granite-3.1-8b-instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
checkpoint-3084/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 32,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"k_proj",
|
24 |
+
"o_proj",
|
25 |
+
"down_proj",
|
26 |
+
"up_proj",
|
27 |
+
"q_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-3084/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b0faa4e435ee5c37b2be55def5eb7079adc516de1757ee17664c3e132e38dd8
|
3 |
+
size 1201743872
|
checkpoint-3084/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_role|>": 49153,
|
3 |
+
"<|start_of_role|>": 49152,
|
4 |
+
"<|tool_call|>": 49154
|
5 |
+
}
|
checkpoint-3084/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3084/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c59cba04e80a61127d73c24d5ada98a795f926f0c43608ba7d0e96610e87b5ec
|
3 |
+
size 201669716
|
checkpoint-3084/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bed810de1ba5fc3c6ca4d86854492dbc9b392b185654e34c3e1298b2dd5b4feb
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9047f9e57b13ce54bdc5b5b2ac806b3de36e06ef41a69bdb1e4c4cc4a3d86213
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dbf4d66848ba437330e008f2cfc75e5031e00e169e4f519e603306517210157
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca58af17bec86aa02d83d02f1dce1adcf2ace175d82b08a9d5bbe941bb4ef825
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66048d766ef637eeffe93015803833352137229af4fed5680560d5d9e5a01142
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18b395aad3543ed1f03de02e877e04a4dfc0cc6c998cbe8c928374e179ab8fa
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3650b87f28f82cc769d88cb6d559d4db5437f0ec50ddb361dfc6992097168715
|
3 |
+
size 15984
|
checkpoint-3084/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761e2386a1b8c1db2a4a08b5e726c3e71c451a3af1a391f75930bbade8be22b6
|
3 |
+
size 15984
|
checkpoint-3084/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f71897c50d4a0cf320866c3d469525886ee81f2b9feecf8ecd6d74bf145d7a23
|
3 |
+
size 1064
|
checkpoint-3084/special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|start_of_role|>",
|
4 |
+
"<|end_of_role|>",
|
5 |
+
"<|tool_call|>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<|end_of_text|>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "<|end_of_text|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<|end_of_text|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<|end_of_text|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
checkpoint-3084/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3084/tokenizer_config.json
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|end_of_text|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<fim_prefix>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<fim_middle>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<fim_suffix>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<fim_pad>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<filename>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<gh_stars>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<issue_start>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<issue_comment>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<issue_closed>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<jupyter_start>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<jupyter_text>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<jupyter_code>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<jupyter_output>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<empty_output>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<commit_before>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<commit_msg>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<commit_after>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<reponame>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"49152": {
|
158 |
+
"content": "<|start_of_role|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"49153": {
|
166 |
+
"content": "<|end_of_role|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"49154": {
|
174 |
+
"content": "<|tool_call|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|start_of_role|>",
|
184 |
+
"<|end_of_role|>",
|
185 |
+
"<|tool_call|>"
|
186 |
+
],
|
187 |
+
"bos_token": "<|end_of_text|>",
|
188 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
|
189 |
+
"clean_up_tokenization_spaces": true,
|
190 |
+
"eos_token": "<|end_of_text|>",
|
191 |
+
"errors": "replace",
|
192 |
+
"extra_special_tokens": {},
|
193 |
+
"model_max_length": 9223372036854775807,
|
194 |
+
"pad_token": "<|end_of_text|>",
|
195 |
+
"padding_side": "left",
|
196 |
+
"tokenizer_class": "GPT2Tokenizer",
|
197 |
+
"unk_token": "<|end_of_text|>",
|
198 |
+
"vocab_size": 49152
|
199 |
+
}
|
checkpoint-3084/trainer_state.json
ADDED
@@ -0,0 +1,2189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.998298906439854,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3084,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.009720534629404616,
|
13 |
+
"grad_norm": 3.39630126953125,
|
14 |
+
"learning_rate": 6.493506493506493e-07,
|
15 |
+
"loss": 0.9229,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.019441069258809233,
|
20 |
+
"grad_norm": 4.325911521911621,
|
21 |
+
"learning_rate": 1.2987012987012986e-06,
|
22 |
+
"loss": 0.9383,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02916160388821385,
|
27 |
+
"grad_norm": 4.230486869812012,
|
28 |
+
"learning_rate": 1.9480519480519483e-06,
|
29 |
+
"loss": 0.932,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.038882138517618466,
|
34 |
+
"grad_norm": 4.264225006103516,
|
35 |
+
"learning_rate": 2.597402597402597e-06,
|
36 |
+
"loss": 0.9285,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04860267314702309,
|
41 |
+
"grad_norm": 3.955381155014038,
|
42 |
+
"learning_rate": 3.246753246753247e-06,
|
43 |
+
"loss": 0.9333,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0583232077764277,
|
48 |
+
"grad_norm": 4.48983097076416,
|
49 |
+
"learning_rate": 3.896103896103897e-06,
|
50 |
+
"loss": 0.9064,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.06804374240583232,
|
55 |
+
"grad_norm": 4.365206241607666,
|
56 |
+
"learning_rate": 4.5454545454545455e-06,
|
57 |
+
"loss": 0.8685,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.07776427703523693,
|
62 |
+
"grad_norm": 3.1013827323913574,
|
63 |
+
"learning_rate": 5.194805194805194e-06,
|
64 |
+
"loss": 0.7865,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.08748481166464156,
|
69 |
+
"grad_norm": 2.3804359436035156,
|
70 |
+
"learning_rate": 5.844155844155844e-06,
|
71 |
+
"loss": 0.7293,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.09720534629404617,
|
76 |
+
"grad_norm": 1.5543646812438965,
|
77 |
+
"learning_rate": 6.493506493506494e-06,
|
78 |
+
"loss": 0.6636,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.10692588092345079,
|
83 |
+
"grad_norm": 1.550211787223816,
|
84 |
+
"learning_rate": 7.1428571428571436e-06,
|
85 |
+
"loss": 0.6161,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1166464155528554,
|
90 |
+
"grad_norm": 1.2692899703979492,
|
91 |
+
"learning_rate": 7.792207792207793e-06,
|
92 |
+
"loss": 0.5856,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.12636695018226002,
|
97 |
+
"grad_norm": 1.4034239053726196,
|
98 |
+
"learning_rate": 8.441558441558442e-06,
|
99 |
+
"loss": 0.5672,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.13608748481166463,
|
104 |
+
"grad_norm": 1.0562485456466675,
|
105 |
+
"learning_rate": 9.090909090909091e-06,
|
106 |
+
"loss": 0.5494,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.14580801944106925,
|
111 |
+
"grad_norm": 1.0509977340698242,
|
112 |
+
"learning_rate": 9.740259740259742e-06,
|
113 |
+
"loss": 0.5339,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.15552855407047386,
|
118 |
+
"grad_norm": 5.404982089996338,
|
119 |
+
"learning_rate": 9.99989653212821e-06,
|
120 |
+
"loss": 0.5324,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.1652490886998785,
|
125 |
+
"grad_norm": 1.1149495840072632,
|
126 |
+
"learning_rate": 9.999264243974907e-06,
|
127 |
+
"loss": 0.5249,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.17496962332928312,
|
132 |
+
"grad_norm": 1.0145925283432007,
|
133 |
+
"learning_rate": 9.998057222421298e-06,
|
134 |
+
"loss": 0.5362,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.18469015795868773,
|
139 |
+
"grad_norm": 1.1371104717254639,
|
140 |
+
"learning_rate": 9.99627560623093e-06,
|
141 |
+
"loss": 0.5101,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.19441069258809235,
|
146 |
+
"grad_norm": 1.1615630388259888,
|
147 |
+
"learning_rate": 9.993919600224802e-06,
|
148 |
+
"loss": 0.5239,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.20413122721749696,
|
153 |
+
"grad_norm": 1.010383129119873,
|
154 |
+
"learning_rate": 9.990989475257843e-06,
|
155 |
+
"loss": 0.5024,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.21385176184690158,
|
160 |
+
"grad_norm": 1.096696376800537,
|
161 |
+
"learning_rate": 9.98748556818776e-06,
|
162 |
+
"loss": 0.5079,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.2235722964763062,
|
167 |
+
"grad_norm": 1.236509919166565,
|
168 |
+
"learning_rate": 9.98340828183631e-06,
|
169 |
+
"loss": 0.4984,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2332928311057108,
|
174 |
+
"grad_norm": 1.9408361911773682,
|
175 |
+
"learning_rate": 9.978758084943004e-06,
|
176 |
+
"loss": 0.5153,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.24301336573511542,
|
181 |
+
"grad_norm": 1.1162898540496826,
|
182 |
+
"learning_rate": 9.973535512111196e-06,
|
183 |
+
"loss": 0.5079,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.25273390036452004,
|
188 |
+
"grad_norm": 1.269111156463623,
|
189 |
+
"learning_rate": 9.967741163746654e-06,
|
190 |
+
"loss": 0.5306,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.2624544349939247,
|
195 |
+
"grad_norm": 3.077763795852661,
|
196 |
+
"learning_rate": 9.961375705988501e-06,
|
197 |
+
"loss": 0.5083,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.27217496962332927,
|
202 |
+
"grad_norm": 1.1506752967834473,
|
203 |
+
"learning_rate": 9.954439870632662e-06,
|
204 |
+
"loss": 0.5135,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.2818955042527339,
|
209 |
+
"grad_norm": 1.2572377920150757,
|
210 |
+
"learning_rate": 9.946934455047718e-06,
|
211 |
+
"loss": 0.5172,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.2916160388821385,
|
216 |
+
"grad_norm": 4.563354015350342,
|
217 |
+
"learning_rate": 9.938860322083241e-06,
|
218 |
+
"loss": 0.4991,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.30133657351154314,
|
223 |
+
"grad_norm": 1.1372555494308472,
|
224 |
+
"learning_rate": 9.930218399970602e-06,
|
225 |
+
"loss": 0.5172,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3110571081409477,
|
230 |
+
"grad_norm": 1.1849030256271362,
|
231 |
+
"learning_rate": 9.921009682216251e-06,
|
232 |
+
"loss": 0.5147,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.32077764277035237,
|
237 |
+
"grad_norm": 2.4454076290130615,
|
238 |
+
"learning_rate": 9.911235227487506e-06,
|
239 |
+
"loss": 0.5052,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.330498177399757,
|
244 |
+
"grad_norm": 1.2442922592163086,
|
245 |
+
"learning_rate": 9.900896159490843e-06,
|
246 |
+
"loss": 0.5015,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.3402187120291616,
|
251 |
+
"grad_norm": 1.2128549814224243,
|
252 |
+
"learning_rate": 9.88999366684271e-06,
|
253 |
+
"loss": 0.5009,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.34993924665856624,
|
258 |
+
"grad_norm": 1.3940240144729614,
|
259 |
+
"learning_rate": 9.878529002932877e-06,
|
260 |
+
"loss": 0.5005,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.3596597812879708,
|
265 |
+
"grad_norm": 1.2711237668991089,
|
266 |
+
"learning_rate": 9.866503485780347e-06,
|
267 |
+
"loss": 0.5079,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.36938031591737547,
|
272 |
+
"grad_norm": 1.4298995733261108,
|
273 |
+
"learning_rate": 9.853918497881831e-06,
|
274 |
+
"loss": 0.4941,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.37910085054678005,
|
279 |
+
"grad_norm": 1.7025047540664673,
|
280 |
+
"learning_rate": 9.840775486052807e-06,
|
281 |
+
"loss": 0.4878,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.3888213851761847,
|
286 |
+
"grad_norm": 1.3242675065994263,
|
287 |
+
"learning_rate": 9.827075961261188e-06,
|
288 |
+
"loss": 0.5048,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.3985419198055893,
|
293 |
+
"grad_norm": 1.3964117765426636,
|
294 |
+
"learning_rate": 9.812821498453624e-06,
|
295 |
+
"loss": 0.5015,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.4082624544349939,
|
300 |
+
"grad_norm": 1.50648832321167,
|
301 |
+
"learning_rate": 9.798013736374436e-06,
|
302 |
+
"loss": 0.4931,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.41798298906439857,
|
307 |
+
"grad_norm": 1.4148674011230469,
|
308 |
+
"learning_rate": 9.782654377377215e-06,
|
309 |
+
"loss": 0.5081,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.42770352369380316,
|
314 |
+
"grad_norm": 1.3090276718139648,
|
315 |
+
"learning_rate": 9.766745187229124e-06,
|
316 |
+
"loss": 0.5072,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.4374240583232078,
|
321 |
+
"grad_norm": 2.2069995403289795,
|
322 |
+
"learning_rate": 9.750287994907883e-06,
|
323 |
+
"loss": 0.4875,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.4471445929526124,
|
328 |
+
"grad_norm": 1.469313144683838,
|
329 |
+
"learning_rate": 9.733284692391524e-06,
|
330 |
+
"loss": 0.4845,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.456865127582017,
|
335 |
+
"grad_norm": 1.5857908725738525,
|
336 |
+
"learning_rate": 9.715737234440868e-06,
|
337 |
+
"loss": 0.4922,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4665856622114216,
|
342 |
+
"grad_norm": 1.4413847923278809,
|
343 |
+
"learning_rate": 9.697647638374797e-06,
|
344 |
+
"loss": 0.5025,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.47630619684082626,
|
349 |
+
"grad_norm": 1.7726529836654663,
|
350 |
+
"learning_rate": 9.679017983838346e-06,
|
351 |
+
"loss": 0.4965,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.48602673147023084,
|
356 |
+
"grad_norm": 1.4608409404754639,
|
357 |
+
"learning_rate": 9.659850412563615e-06,
|
358 |
+
"loss": 0.4885,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4957472660996355,
|
363 |
+
"grad_norm": 1.461808204650879,
|
364 |
+
"learning_rate": 9.64014712812354e-06,
|
365 |
+
"loss": 0.5012,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.5054678007290401,
|
370 |
+
"grad_norm": 1.954996943473816,
|
371 |
+
"learning_rate": 9.619910395678582e-06,
|
372 |
+
"loss": 0.5032,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.5151883353584447,
|
377 |
+
"grad_norm": 1.4469919204711914,
|
378 |
+
"learning_rate": 9.59914254171629e-06,
|
379 |
+
"loss": 0.4986,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.5249088699878494,
|
384 |
+
"grad_norm": 1.5403884649276733,
|
385 |
+
"learning_rate": 9.577845953783864e-06,
|
386 |
+
"loss": 0.475,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.534629404617254,
|
391 |
+
"grad_norm": 4.5531535148620605,
|
392 |
+
"learning_rate": 9.556023080213657e-06,
|
393 |
+
"loss": 0.4995,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.5443499392466585,
|
398 |
+
"grad_norm": 1.598029375076294,
|
399 |
+
"learning_rate": 9.533676429841712e-06,
|
400 |
+
"loss": 0.4904,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.5540704738760632,
|
405 |
+
"grad_norm": 1.4221954345703125,
|
406 |
+
"learning_rate": 9.51080857171934e-06,
|
407 |
+
"loss": 0.4886,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.5637910085054678,
|
412 |
+
"grad_norm": 1.4414297342300415,
|
413 |
+
"learning_rate": 9.487422134817767e-06,
|
414 |
+
"loss": 0.5036,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.5735115431348724,
|
419 |
+
"grad_norm": 1.551998496055603,
|
420 |
+
"learning_rate": 9.463519807725906e-06,
|
421 |
+
"loss": 0.5018,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.583232077764277,
|
426 |
+
"grad_norm": 1.9298173189163208,
|
427 |
+
"learning_rate": 9.439104338341255e-06,
|
428 |
+
"loss": 0.5037,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.5929526123936817,
|
433 |
+
"grad_norm": 1.6527436971664429,
|
434 |
+
"learning_rate": 9.414178533554e-06,
|
435 |
+
"loss": 0.4946,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.6026731470230863,
|
440 |
+
"grad_norm": 1.6211801767349243,
|
441 |
+
"learning_rate": 9.388745258924321e-06,
|
442 |
+
"loss": 0.4852,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.6123936816524909,
|
447 |
+
"grad_norm": 1.8734742403030396,
|
448 |
+
"learning_rate": 9.362807438352954e-06,
|
449 |
+
"loss": 0.4755,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.6221142162818954,
|
454 |
+
"grad_norm": 1.505476951599121,
|
455 |
+
"learning_rate": 9.33636805374505e-06,
|
456 |
+
"loss": 0.4916,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.6318347509113001,
|
461 |
+
"grad_norm": 1.6077882051467896,
|
462 |
+
"learning_rate": 9.309430144667376e-06,
|
463 |
+
"loss": 0.4962,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.6415552855407047,
|
468 |
+
"grad_norm": 1.5872342586517334,
|
469 |
+
"learning_rate": 9.28199680799885e-06,
|
470 |
+
"loss": 0.4867,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.6512758201701093,
|
475 |
+
"grad_norm": 1.5471742153167725,
|
476 |
+
"learning_rate": 9.254071197574539e-06,
|
477 |
+
"loss": 0.4845,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.660996354799514,
|
482 |
+
"grad_norm": 1.6092792749404907,
|
483 |
+
"learning_rate": 9.22565652382307e-06,
|
484 |
+
"loss": 0.4758,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.6707168894289186,
|
489 |
+
"grad_norm": 1.589211344718933,
|
490 |
+
"learning_rate": 9.196756053397544e-06,
|
491 |
+
"loss": 0.4856,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.6804374240583232,
|
496 |
+
"grad_norm": 1.6765447854995728,
|
497 |
+
"learning_rate": 9.167373108799999e-06,
|
498 |
+
"loss": 0.4854,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.6901579586877278,
|
503 |
+
"grad_norm": 1.7541825771331787,
|
504 |
+
"learning_rate": 9.137511067999444e-06,
|
505 |
+
"loss": 0.4952,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6998784933171325,
|
510 |
+
"grad_norm": 1.6507395505905151,
|
511 |
+
"learning_rate": 9.107173364043501e-06,
|
512 |
+
"loss": 0.4887,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.7095990279465371,
|
517 |
+
"grad_norm": 1.5526636838912964,
|
518 |
+
"learning_rate": 9.076363484663745e-06,
|
519 |
+
"loss": 0.4815,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.7193195625759417,
|
524 |
+
"grad_norm": 1.7525495290756226,
|
525 |
+
"learning_rate": 9.045084971874738e-06,
|
526 |
+
"loss": 0.4756,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.7290400972053463,
|
531 |
+
"grad_norm": 1.812304139137268,
|
532 |
+
"learning_rate": 9.013341421566818e-06,
|
533 |
+
"loss": 0.4847,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.7387606318347509,
|
538 |
+
"grad_norm": 1.6675856113433838,
|
539 |
+
"learning_rate": 8.981136483092719e-06,
|
540 |
+
"loss": 0.4756,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.7484811664641555,
|
545 |
+
"grad_norm": 1.7526271343231201,
|
546 |
+
"learning_rate": 8.948473858848005e-06,
|
547 |
+
"loss": 0.491,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.7582017010935601,
|
552 |
+
"grad_norm": 2.878983736038208,
|
553 |
+
"learning_rate": 8.915357303845453e-06,
|
554 |
+
"loss": 0.4907,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.7679222357229648,
|
559 |
+
"grad_norm": 1.9142616987228394,
|
560 |
+
"learning_rate": 8.881790625283352e-06,
|
561 |
+
"loss": 0.4838,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.7776427703523694,
|
566 |
+
"grad_norm": 1.7589762210845947,
|
567 |
+
"learning_rate": 8.847777682107805e-06,
|
568 |
+
"loss": 0.4792,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.787363304981774,
|
573 |
+
"grad_norm": 1.7950881719589233,
|
574 |
+
"learning_rate": 8.813322384569114e-06,
|
575 |
+
"loss": 0.4932,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.7970838396111786,
|
580 |
+
"grad_norm": 1.7117515802383423,
|
581 |
+
"learning_rate": 8.77842869377222e-06,
|
582 |
+
"loss": 0.4873,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.8068043742405833,
|
587 |
+
"grad_norm": 1.83305823802948,
|
588 |
+
"learning_rate": 8.743100621221334e-06,
|
589 |
+
"loss": 0.4928,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.8165249088699879,
|
594 |
+
"grad_norm": 1.8732259273529053,
|
595 |
+
"learning_rate": 8.707342228358753e-06,
|
596 |
+
"loss": 0.4861,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.8262454434993924,
|
601 |
+
"grad_norm": 1.688181757926941,
|
602 |
+
"learning_rate": 8.671157626097949e-06,
|
603 |
+
"loss": 0.4842,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.8359659781287971,
|
608 |
+
"grad_norm": 1.8716121912002563,
|
609 |
+
"learning_rate": 8.634550974350954e-06,
|
610 |
+
"loss": 0.5003,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.8456865127582017,
|
615 |
+
"grad_norm": 1.9156651496887207,
|
616 |
+
"learning_rate": 8.597526481550133e-06,
|
617 |
+
"loss": 0.4843,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.8554070473876063,
|
622 |
+
"grad_norm": 1.92584228515625,
|
623 |
+
"learning_rate": 8.560088404164358e-06,
|
624 |
+
"loss": 0.4716,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.8651275820170109,
|
629 |
+
"grad_norm": 1.8322736024856567,
|
630 |
+
"learning_rate": 8.522241046209674e-06,
|
631 |
+
"loss": 0.4926,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.8748481166464156,
|
636 |
+
"grad_norm": 1.990666389465332,
|
637 |
+
"learning_rate": 8.483988758754492e-06,
|
638 |
+
"loss": 0.4872,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.8845686512758202,
|
643 |
+
"grad_norm": 1.876725435256958,
|
644 |
+
"learning_rate": 8.445335939419374e-06,
|
645 |
+
"loss": 0.482,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.8942891859052248,
|
650 |
+
"grad_norm": 3.740494966506958,
|
651 |
+
"learning_rate": 8.406287031871469e-06,
|
652 |
+
"loss": 0.4884,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.9040097205346294,
|
657 |
+
"grad_norm": 1.6894994974136353,
|
658 |
+
"learning_rate": 8.36684652531365e-06,
|
659 |
+
"loss": 0.4751,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.913730255164034,
|
664 |
+
"grad_norm": 1.8580703735351562,
|
665 |
+
"learning_rate": 8.327018953968423e-06,
|
666 |
+
"loss": 0.48,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.9234507897934386,
|
671 |
+
"grad_norm": 1.8106019496917725,
|
672 |
+
"learning_rate": 8.286808896556655e-06,
|
673 |
+
"loss": 0.4826,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.9331713244228432,
|
678 |
+
"grad_norm": 1.7582460641860962,
|
679 |
+
"learning_rate": 8.246220975771185e-06,
|
680 |
+
"loss": 0.4867,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.9428918590522479,
|
685 |
+
"grad_norm": 1.7424395084381104,
|
686 |
+
"learning_rate": 8.205259857745382e-06,
|
687 |
+
"loss": 0.4797,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.9526123936816525,
|
692 |
+
"grad_norm": 1.8223532438278198,
|
693 |
+
"learning_rate": 8.163930251516719e-06,
|
694 |
+
"loss": 0.4733,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.9623329283110571,
|
699 |
+
"grad_norm": 1.8597066402435303,
|
700 |
+
"learning_rate": 8.122236908485391e-06,
|
701 |
+
"loss": 0.486,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.9720534629404617,
|
706 |
+
"grad_norm": 1.8571597337722778,
|
707 |
+
"learning_rate": 8.080184621868089e-06,
|
708 |
+
"loss": 0.4729,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.9817739975698664,
|
713 |
+
"grad_norm": 1.9846396446228027,
|
714 |
+
"learning_rate": 8.037778226146949e-06,
|
715 |
+
"loss": 0.4858,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.991494532199271,
|
720 |
+
"grad_norm": 4.8959150314331055,
|
721 |
+
"learning_rate": 7.995022596513762e-06,
|
722 |
+
"loss": 0.476,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.0014580801944106,
|
727 |
+
"grad_norm": 4.2978339195251465,
|
728 |
+
"learning_rate": 7.951922648309507e-06,
|
729 |
+
"loss": 0.4788,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.0111786148238153,
|
734 |
+
"grad_norm": 4.751235008239746,
|
735 |
+
"learning_rate": 7.908483336459265e-06,
|
736 |
+
"loss": 0.4827,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.02089914945322,
|
741 |
+
"grad_norm": 3.760265827178955,
|
742 |
+
"learning_rate": 7.864709654902579e-06,
|
743 |
+
"loss": 0.4726,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.0306196840826245,
|
748 |
+
"grad_norm": 4.5475287437438965,
|
749 |
+
"learning_rate": 7.820606636019341e-06,
|
750 |
+
"loss": 0.4691,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.0403402187120292,
|
755 |
+
"grad_norm": 4.606244087219238,
|
756 |
+
"learning_rate": 7.776179350051246e-06,
|
757 |
+
"loss": 0.4789,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.0500607533414337,
|
762 |
+
"grad_norm": 3.974292039871216,
|
763 |
+
"learning_rate": 7.731432904518893e-06,
|
764 |
+
"loss": 0.4813,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.0597812879708384,
|
769 |
+
"grad_norm": 3.419517755508423,
|
770 |
+
"learning_rate": 7.68637244363462e-06,
|
771 |
+
"loss": 0.4748,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.069501822600243,
|
776 |
+
"grad_norm": 4.130045413970947,
|
777 |
+
"learning_rate": 7.6410031477111e-06,
|
778 |
+
"loss": 0.476,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.0792223572296475,
|
783 |
+
"grad_norm": 4.5706329345703125,
|
784 |
+
"learning_rate": 7.595330232565785e-06,
|
785 |
+
"loss": 0.4692,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.0889428918590522,
|
790 |
+
"grad_norm": 3.4931533336639404,
|
791 |
+
"learning_rate": 7.549358948921293e-06,
|
792 |
+
"loss": 0.474,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.098663426488457,
|
797 |
+
"grad_norm": 4.1753034591674805,
|
798 |
+
"learning_rate": 7.5030945818017505e-06,
|
799 |
+
"loss": 0.4714,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.1083839611178614,
|
804 |
+
"grad_norm": 4.3049092292785645,
|
805 |
+
"learning_rate": 7.456542449925225e-06,
|
806 |
+
"loss": 0.4731,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.1181044957472661,
|
811 |
+
"grad_norm": 8.405867576599121,
|
812 |
+
"learning_rate": 7.409707905092246e-06,
|
813 |
+
"loss": 0.4842,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.1278250303766708,
|
818 |
+
"grad_norm": 3.693899393081665,
|
819 |
+
"learning_rate": 7.362596331570554e-06,
|
820 |
+
"loss": 0.478,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.1375455650060753,
|
825 |
+
"grad_norm": 4.493783950805664,
|
826 |
+
"learning_rate": 7.315213145476109e-06,
|
827 |
+
"loss": 0.4683,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.14726609963548,
|
832 |
+
"grad_norm": 4.062183380126953,
|
833 |
+
"learning_rate": 7.267563794150424e-06,
|
834 |
+
"loss": 0.4696,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.1569866342648845,
|
839 |
+
"grad_norm": 4.371154308319092,
|
840 |
+
"learning_rate": 7.2196537555343284e-06,
|
841 |
+
"loss": 0.4815,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.1667071688942892,
|
846 |
+
"grad_norm": 5.894556999206543,
|
847 |
+
"learning_rate": 7.171488537538195e-06,
|
848 |
+
"loss": 0.4798,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.1764277035236939,
|
853 |
+
"grad_norm": 3.3999180793762207,
|
854 |
+
"learning_rate": 7.123073677408743e-06,
|
855 |
+
"loss": 0.4645,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.1861482381530983,
|
860 |
+
"grad_norm": 3.9849109649658203,
|
861 |
+
"learning_rate": 7.074414741092444e-06,
|
862 |
+
"loss": 0.4747,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.195868772782503,
|
867 |
+
"grad_norm": 8.96238899230957,
|
868 |
+
"learning_rate": 7.025517322595648e-06,
|
869 |
+
"loss": 0.4809,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.2055893074119077,
|
874 |
+
"grad_norm": 3.941241502761841,
|
875 |
+
"learning_rate": 6.976387043341472e-06,
|
876 |
+
"loss": 0.4753,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.2153098420413122,
|
881 |
+
"grad_norm": 4.701385021209717,
|
882 |
+
"learning_rate": 6.927029551523548e-06,
|
883 |
+
"loss": 0.4774,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.225030376670717,
|
888 |
+
"grad_norm": 4.075878620147705,
|
889 |
+
"learning_rate": 6.877450521456679e-06,
|
890 |
+
"loss": 0.4774,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.2347509113001216,
|
895 |
+
"grad_norm": 3.7492356300354004,
|
896 |
+
"learning_rate": 6.827655652924499e-06,
|
897 |
+
"loss": 0.4577,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.244471445929526,
|
902 |
+
"grad_norm": 3.856064558029175,
|
903 |
+
"learning_rate": 6.777650670524212e-06,
|
904 |
+
"loss": 0.4785,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.2541919805589308,
|
909 |
+
"grad_norm": 4.559633731842041,
|
910 |
+
"learning_rate": 6.72744132300847e-06,
|
911 |
+
"loss": 0.4734,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.2639125151883355,
|
916 |
+
"grad_norm": 3.9584572315216064,
|
917 |
+
"learning_rate": 6.677033382624467e-06,
|
918 |
+
"loss": 0.4792,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.27363304981774,
|
923 |
+
"grad_norm": 3.9753267765045166,
|
924 |
+
"learning_rate": 6.626432644450354e-06,
|
925 |
+
"loss": 0.4945,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.2833535844471446,
|
930 |
+
"grad_norm": 3.5308444499969482,
|
931 |
+
"learning_rate": 6.575644925729008e-06,
|
932 |
+
"loss": 0.4724,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.2930741190765493,
|
937 |
+
"grad_norm": 3.5413670539855957,
|
938 |
+
"learning_rate": 6.524676065199259e-06,
|
939 |
+
"loss": 0.4834,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.3027946537059538,
|
944 |
+
"grad_norm": 3.488835573196411,
|
945 |
+
"learning_rate": 6.473531922424654e-06,
|
946 |
+
"loss": 0.4731,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.3125151883353585,
|
951 |
+
"grad_norm": 4.209514617919922,
|
952 |
+
"learning_rate": 6.422218377119818e-06,
|
953 |
+
"loss": 0.4713,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.322235722964763,
|
958 |
+
"grad_norm": 4.186116695404053,
|
959 |
+
"learning_rate": 6.370741328474497e-06,
|
960 |
+
"loss": 0.4694,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.3319562575941677,
|
965 |
+
"grad_norm": 4.734013080596924,
|
966 |
+
"learning_rate": 6.31910669447537e-06,
|
967 |
+
"loss": 0.4844,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.3416767922235722,
|
972 |
+
"grad_norm": 3.7548201084136963,
|
973 |
+
"learning_rate": 6.267320411225699e-06,
|
974 |
+
"loss": 0.4897,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.3513973268529769,
|
979 |
+
"grad_norm": 5.411615371704102,
|
980 |
+
"learning_rate": 6.215388432262885e-06,
|
981 |
+
"loss": 0.489,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.3611178614823816,
|
986 |
+
"grad_norm": 4.5117411613464355,
|
987 |
+
"learning_rate": 6.163316727874032e-06,
|
988 |
+
"loss": 0.4762,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.370838396111786,
|
993 |
+
"grad_norm": 4.529521942138672,
|
994 |
+
"learning_rate": 6.111111284409587e-06,
|
995 |
+
"loss": 0.4856,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.3805589307411907,
|
1000 |
+
"grad_norm": 3.990785598754883,
|
1001 |
+
"learning_rate": 6.058778103595115e-06,
|
1002 |
+
"loss": 0.4719,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.3902794653705954,
|
1007 |
+
"grad_norm": 3.461073160171509,
|
1008 |
+
"learning_rate": 6.006323201841332e-06,
|
1009 |
+
"loss": 0.4762,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.4,
|
1014 |
+
"grad_norm": 4.177917003631592,
|
1015 |
+
"learning_rate": 5.953752609552428e-06,
|
1016 |
+
"loss": 0.4853,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.4097205346294046,
|
1021 |
+
"grad_norm": 4.377038478851318,
|
1022 |
+
"learning_rate": 5.9010723704327945e-06,
|
1023 |
+
"loss": 0.4766,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.4194410692588093,
|
1028 |
+
"grad_norm": 3.7444796562194824,
|
1029 |
+
"learning_rate": 5.848288540792213e-06,
|
1030 |
+
"loss": 0.4738,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.4291616038882138,
|
1035 |
+
"grad_norm": 3.8287205696105957,
|
1036 |
+
"learning_rate": 5.795407188849612e-06,
|
1037 |
+
"loss": 0.4686,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.4388821385176185,
|
1042 |
+
"grad_norm": 6.44314432144165,
|
1043 |
+
"learning_rate": 5.7424343940354275e-06,
|
1044 |
+
"loss": 0.4658,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.4486026731470232,
|
1049 |
+
"grad_norm": 3.9452617168426514,
|
1050 |
+
"learning_rate": 5.689376246292698e-06,
|
1051 |
+
"loss": 0.4713,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.4583232077764277,
|
1056 |
+
"grad_norm": 4.222135543823242,
|
1057 |
+
"learning_rate": 5.636238845376947e-06,
|
1058 |
+
"loss": 0.4685,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.4680437424058324,
|
1063 |
+
"grad_norm": 3.804692268371582,
|
1064 |
+
"learning_rate": 5.58302830015492e-06,
|
1065 |
+
"loss": 0.469,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.477764277035237,
|
1070 |
+
"grad_norm": 3.252633571624756,
|
1071 |
+
"learning_rate": 5.529750727902301e-06,
|
1072 |
+
"loss": 0.4773,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.4874848116646415,
|
1077 |
+
"grad_norm": 4.714046955108643,
|
1078 |
+
"learning_rate": 5.4764122536004406e-06,
|
1079 |
+
"loss": 0.482,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.4972053462940462,
|
1084 |
+
"grad_norm": 3.599266290664673,
|
1085 |
+
"learning_rate": 5.423019009232207e-06,
|
1086 |
+
"loss": 0.4662,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.506925880923451,
|
1091 |
+
"grad_norm": 4.187329292297363,
|
1092 |
+
"learning_rate": 5.369577133077033e-06,
|
1093 |
+
"loss": 0.4652,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.5166464155528554,
|
1098 |
+
"grad_norm": 3.5032341480255127,
|
1099 |
+
"learning_rate": 5.316092769005239e-06,
|
1100 |
+
"loss": 0.4834,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.5263669501822599,
|
1105 |
+
"grad_norm": 4.487483024597168,
|
1106 |
+
"learning_rate": 5.262572065771703e-06,
|
1107 |
+
"loss": 0.465,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.5360874848116648,
|
1112 |
+
"grad_norm": 4.465209484100342,
|
1113 |
+
"learning_rate": 5.209021176308992e-06,
|
1114 |
+
"loss": 0.4683,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.5458080194410693,
|
1119 |
+
"grad_norm": 3.7371511459350586,
|
1120 |
+
"learning_rate": 5.155446257019983e-06,
|
1121 |
+
"loss": 0.4716,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.5555285540704737,
|
1126 |
+
"grad_norm": 3.683544158935547,
|
1127 |
+
"learning_rate": 5.101853467070112e-06,
|
1128 |
+
"loss": 0.4761,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.5652490886998784,
|
1133 |
+
"grad_norm": 5.11771297454834,
|
1134 |
+
"learning_rate": 5.048248967679292e-06,
|
1135 |
+
"loss": 0.4766,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.5749696233292831,
|
1140 |
+
"grad_norm": 4.279435157775879,
|
1141 |
+
"learning_rate": 4.994638921413591e-06,
|
1142 |
+
"loss": 0.4789,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.5846901579586876,
|
1147 |
+
"grad_norm": 4.194601535797119,
|
1148 |
+
"learning_rate": 4.941029491476768e-06,
|
1149 |
+
"loss": 0.4657,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.5944106925880923,
|
1154 |
+
"grad_norm": 16.01555061340332,
|
1155 |
+
"learning_rate": 4.887426841001728e-06,
|
1156 |
+
"loss": 0.4727,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.604131227217497,
|
1161 |
+
"grad_norm": 4.629364013671875,
|
1162 |
+
"learning_rate": 4.833837132341982e-06,
|
1163 |
+
"loss": 0.4788,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.6138517618469015,
|
1168 |
+
"grad_norm": 4.278013229370117,
|
1169 |
+
"learning_rate": 4.780266526363206e-06,
|
1170 |
+
"loss": 0.473,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.6235722964763062,
|
1175 |
+
"grad_norm": 3.2145824432373047,
|
1176 |
+
"learning_rate": 4.726721181734958e-06,
|
1177 |
+
"loss": 0.4717,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.6332928311057109,
|
1182 |
+
"grad_norm": 4.674281120300293,
|
1183 |
+
"learning_rate": 4.673207254222671e-06,
|
1184 |
+
"loss": 0.4718,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.6430133657351154,
|
1189 |
+
"grad_norm": 4.432647705078125,
|
1190 |
+
"learning_rate": 4.619730895979938e-06,
|
1191 |
+
"loss": 0.4758,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.65273390036452,
|
1196 |
+
"grad_norm": 6.134150505065918,
|
1197 |
+
"learning_rate": 4.56629825484127e-06,
|
1198 |
+
"loss": 0.4776,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.6624544349939248,
|
1203 |
+
"grad_norm": 3.62800931930542,
|
1204 |
+
"learning_rate": 4.512915473615288e-06,
|
1205 |
+
"loss": 0.4597,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.6721749696233292,
|
1210 |
+
"grad_norm": 4.815770626068115,
|
1211 |
+
"learning_rate": 4.459588689378548e-06,
|
1212 |
+
"loss": 0.4724,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.681895504252734,
|
1217 |
+
"grad_norm": 4.476830005645752,
|
1218 |
+
"learning_rate": 4.406324032769987e-06,
|
1219 |
+
"loss": 0.4699,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.6916160388821386,
|
1224 |
+
"grad_norm": 4.451855659484863,
|
1225 |
+
"learning_rate": 4.3531276272861254e-06,
|
1226 |
+
"loss": 0.4723,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.701336573511543,
|
1231 |
+
"grad_norm": 3.466305732727051,
|
1232 |
+
"learning_rate": 4.300005588577091e-06,
|
1233 |
+
"loss": 0.4688,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.7110571081409478,
|
1238 |
+
"grad_norm": 4.952362537384033,
|
1239 |
+
"learning_rate": 4.246964023743537e-06,
|
1240 |
+
"loss": 0.4728,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.7207776427703525,
|
1245 |
+
"grad_norm": 5.363527774810791,
|
1246 |
+
"learning_rate": 4.194009030634556e-06,
|
1247 |
+
"loss": 0.4692,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.730498177399757,
|
1252 |
+
"grad_norm": 3.821661949157715,
|
1253 |
+
"learning_rate": 4.1411466971466345e-06,
|
1254 |
+
"loss": 0.4706,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.7402187120291615,
|
1259 |
+
"grad_norm": 4.455121040344238,
|
1260 |
+
"learning_rate": 4.088383100523786e-06,
|
1261 |
+
"loss": 0.4636,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.7499392466585664,
|
1266 |
+
"grad_norm": 3.9628641605377197,
|
1267 |
+
"learning_rate": 4.035724306658869e-06,
|
1268 |
+
"loss": 0.4744,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.7596597812879708,
|
1273 |
+
"grad_norm": 3.942005157470703,
|
1274 |
+
"learning_rate": 3.983176369396249e-06,
|
1275 |
+
"loss": 0.4844,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.7693803159173753,
|
1280 |
+
"grad_norm": 4.5945820808410645,
|
1281 |
+
"learning_rate": 3.9307453298358105e-06,
|
1282 |
+
"loss": 0.4691,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.77910085054678,
|
1287 |
+
"grad_norm": 3.7485504150390625,
|
1288 |
+
"learning_rate": 3.878437215638462e-06,
|
1289 |
+
"loss": 0.4679,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.7888213851761847,
|
1294 |
+
"grad_norm": 4.494779109954834,
|
1295 |
+
"learning_rate": 3.826258040333169e-06,
|
1296 |
+
"loss": 0.4781,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.7985419198055892,
|
1301 |
+
"grad_norm": 3.641651153564453,
|
1302 |
+
"learning_rate": 3.774213802625617e-06,
|
1303 |
+
"loss": 0.4726,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.808262454434994,
|
1308 |
+
"grad_norm": 4.123895168304443,
|
1309 |
+
"learning_rate": 3.7223104857085818e-06,
|
1310 |
+
"loss": 0.4617,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.8179829890643986,
|
1315 |
+
"grad_norm": 4.825061798095703,
|
1316 |
+
"learning_rate": 3.670554056574076e-06,
|
1317 |
+
"loss": 0.4832,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.827703523693803,
|
1322 |
+
"grad_norm": 3.8967978954315186,
|
1323 |
+
"learning_rate": 3.618950465327368e-06,
|
1324 |
+
"loss": 0.4793,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.8374240583232078,
|
1329 |
+
"grad_norm": 4.325230598449707,
|
1330 |
+
"learning_rate": 3.5675056445029265e-06,
|
1331 |
+
"loss": 0.4731,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.8471445929526125,
|
1336 |
+
"grad_norm": 4.8459343910217285,
|
1337 |
+
"learning_rate": 3.516225508382409e-06,
|
1338 |
+
"loss": 0.4651,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.856865127582017,
|
1343 |
+
"grad_norm": 4.086941719055176,
|
1344 |
+
"learning_rate": 3.4651159523147197e-06,
|
1345 |
+
"loss": 0.4698,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.8665856622114216,
|
1350 |
+
"grad_norm": 4.497838973999023,
|
1351 |
+
"learning_rate": 3.4141828520382735e-06,
|
1352 |
+
"loss": 0.4688,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.8763061968408263,
|
1357 |
+
"grad_norm": 4.377286911010742,
|
1358 |
+
"learning_rate": 3.363432063005487e-06,
|
1359 |
+
"loss": 0.4742,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.8860267314702308,
|
1364 |
+
"grad_norm": 4.47113037109375,
|
1365 |
+
"learning_rate": 3.3128694197096224e-06,
|
1366 |
+
"loss": 0.4831,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.8957472660996355,
|
1371 |
+
"grad_norm": 4.1656928062438965,
|
1372 |
+
"learning_rate": 3.2625007350140344e-06,
|
1373 |
+
"loss": 0.4681,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.9054678007290402,
|
1378 |
+
"grad_norm": 4.184291362762451,
|
1379 |
+
"learning_rate": 3.2123317994838925e-06,
|
1380 |
+
"loss": 0.4735,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.9151883353584447,
|
1385 |
+
"grad_norm": 4.275445938110352,
|
1386 |
+
"learning_rate": 3.162368380720492e-06,
|
1387 |
+
"loss": 0.4693,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.9249088699878494,
|
1392 |
+
"grad_norm": 4.3425068855285645,
|
1393 |
+
"learning_rate": 3.1126162226981727e-06,
|
1394 |
+
"loss": 0.4688,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.934629404617254,
|
1399 |
+
"grad_norm": 3.7065649032592773,
|
1400 |
+
"learning_rate": 3.063081045103986e-06,
|
1401 |
+
"loss": 0.4603,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.9443499392466586,
|
1406 |
+
"grad_norm": 4.646661281585693,
|
1407 |
+
"learning_rate": 3.01376854268013e-06,
|
1408 |
+
"loss": 0.4835,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.954070473876063,
|
1413 |
+
"grad_norm": 4.484701633453369,
|
1414 |
+
"learning_rate": 2.9646843845692657e-06,
|
1415 |
+
"loss": 0.4779,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.963791008505468,
|
1420 |
+
"grad_norm": 5.250178813934326,
|
1421 |
+
"learning_rate": 2.91583421366277e-06,
|
1422 |
+
"loss": 0.4792,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.9735115431348724,
|
1427 |
+
"grad_norm": 4.839537143707275,
|
1428 |
+
"learning_rate": 2.867223645952007e-06,
|
1429 |
+
"loss": 0.4717,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.983232077764277,
|
1434 |
+
"grad_norm": 4.47597074508667,
|
1435 |
+
"learning_rate": 2.818858269882699e-06,
|
1436 |
+
"loss": 0.4694,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.9929526123936816,
|
1441 |
+
"grad_norm": 4.061124801635742,
|
1442 |
+
"learning_rate": 2.770743645712455e-06,
|
1443 |
+
"loss": 0.4748,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.0029161603888213,
|
1448 |
+
"grad_norm": 2.0077168941497803,
|
1449 |
+
"learning_rate": 2.722885304871539e-06,
|
1450 |
+
"loss": 0.4654,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.012636695018226,
|
1455 |
+
"grad_norm": 2.1146748065948486,
|
1456 |
+
"learning_rate": 2.6752887493269676e-06,
|
1457 |
+
"loss": 0.4666,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.0223572296476306,
|
1462 |
+
"grad_norm": 2.04209303855896,
|
1463 |
+
"learning_rate": 2.627959450949975e-06,
|
1464 |
+
"loss": 0.4716,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.032077764277035,
|
1469 |
+
"grad_norm": 1.962570071220398,
|
1470 |
+
"learning_rate": 2.580902850886947e-06,
|
1471 |
+
"loss": 0.4761,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.04179829890644,
|
1476 |
+
"grad_norm": 2.0052075386047363,
|
1477 |
+
"learning_rate": 2.5341243589339005e-06,
|
1478 |
+
"loss": 0.4608,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.0515188335358445,
|
1483 |
+
"grad_norm": 2.1367218494415283,
|
1484 |
+
"learning_rate": 2.487629352914531e-06,
|
1485 |
+
"loss": 0.4748,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.061239368165249,
|
1490 |
+
"grad_norm": 3.518221855163574,
|
1491 |
+
"learning_rate": 2.4414231780619825e-06,
|
1492 |
+
"loss": 0.4676,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.070959902794654,
|
1497 |
+
"grad_norm": 2.140087604522705,
|
1498 |
+
"learning_rate": 2.395511146404318e-06,
|
1499 |
+
"loss": 0.46,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.0806804374240584,
|
1504 |
+
"grad_norm": 2.2499241828918457,
|
1505 |
+
"learning_rate": 2.34989853615385e-06,
|
1506 |
+
"loss": 0.4628,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.090400972053463,
|
1511 |
+
"grad_norm": 2.151681661605835,
|
1512 |
+
"learning_rate": 2.3045905911003253e-06,
|
1513 |
+
"loss": 0.4755,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.1001215066828673,
|
1518 |
+
"grad_norm": 2.0793325901031494,
|
1519 |
+
"learning_rate": 2.259592520008086e-06,
|
1520 |
+
"loss": 0.4768,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.1098420413122723,
|
1525 |
+
"grad_norm": 2.1793599128723145,
|
1526 |
+
"learning_rate": 2.2149094960172434e-06,
|
1527 |
+
"loss": 0.456,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.1195625759416767,
|
1532 |
+
"grad_norm": 1.8569040298461914,
|
1533 |
+
"learning_rate": 2.170546656048966e-06,
|
1534 |
+
"loss": 0.4679,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.129283110571081,
|
1539 |
+
"grad_norm": 2.157439708709717,
|
1540 |
+
"learning_rate": 2.1265091002149167e-06,
|
1541 |
+
"loss": 0.4683,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.139003645200486,
|
1546 |
+
"grad_norm": 2.0931077003479004,
|
1547 |
+
"learning_rate": 2.082801891230916e-06,
|
1548 |
+
"loss": 0.4718,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.1487241798298906,
|
1553 |
+
"grad_norm": 2.0878078937530518,
|
1554 |
+
"learning_rate": 2.039430053834931e-06,
|
1555 |
+
"loss": 0.4768,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.158444714459295,
|
1560 |
+
"grad_norm": 2.0429890155792236,
|
1561 |
+
"learning_rate": 1.9963985742094e-06,
|
1562 |
+
"loss": 0.4782,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.1681652490887,
|
1567 |
+
"grad_norm": 2.038283586502075,
|
1568 |
+
"learning_rate": 1.9537123994080113e-06,
|
1569 |
+
"loss": 0.4607,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.1778857837181045,
|
1574 |
+
"grad_norm": 2.2046799659729004,
|
1575 |
+
"learning_rate": 1.911376436786963e-06,
|
1576 |
+
"loss": 0.47,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.187606318347509,
|
1581 |
+
"grad_norm": 2.4161760807037354,
|
1582 |
+
"learning_rate": 1.869395553440807e-06,
|
1583 |
+
"loss": 0.4715,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.197326852976914,
|
1588 |
+
"grad_norm": 2.080486297607422,
|
1589 |
+
"learning_rate": 1.8277745756428973e-06,
|
1590 |
+
"loss": 0.4606,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.2070473876063184,
|
1595 |
+
"grad_norm": 2.1269888877868652,
|
1596 |
+
"learning_rate": 1.786518288290563e-06,
|
1597 |
+
"loss": 0.4581,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.216767922235723,
|
1602 |
+
"grad_norm": 2.1676316261291504,
|
1603 |
+
"learning_rate": 1.7456314343549946e-06,
|
1604 |
+
"loss": 0.457,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.2264884568651278,
|
1609 |
+
"grad_norm": 2.3082780838012695,
|
1610 |
+
"learning_rate": 1.7051187143359975e-06,
|
1611 |
+
"loss": 0.4738,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.2362089914945322,
|
1616 |
+
"grad_norm": 2.100372076034546,
|
1617 |
+
"learning_rate": 1.6649847857215945e-06,
|
1618 |
+
"loss": 0.4716,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.2459295261239367,
|
1623 |
+
"grad_norm": 2.2547926902770996,
|
1624 |
+
"learning_rate": 1.6252342624525802e-06,
|
1625 |
+
"loss": 0.466,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 2.2556500607533416,
|
1630 |
+
"grad_norm": 2.1985204219818115,
|
1631 |
+
"learning_rate": 1.5858717143920988e-06,
|
1632 |
+
"loss": 0.4701,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.265370595382746,
|
1637 |
+
"grad_norm": 2.1563034057617188,
|
1638 |
+
"learning_rate": 1.5469016668002652e-06,
|
1639 |
+
"loss": 0.4685,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.2750911300121506,
|
1644 |
+
"grad_norm": 2.214901924133301,
|
1645 |
+
"learning_rate": 1.5083285998139308e-06,
|
1646 |
+
"loss": 0.458,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.2848116646415555,
|
1651 |
+
"grad_norm": 2.1835556030273438,
|
1652 |
+
"learning_rate": 1.4701569479316252e-06,
|
1653 |
+
"loss": 0.4624,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 2.29453219927096,
|
1658 |
+
"grad_norm": 1.9954426288604736,
|
1659 |
+
"learning_rate": 1.4323910995037576e-06,
|
1660 |
+
"loss": 0.4641,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 2.3042527339003644,
|
1665 |
+
"grad_norm": 2.121554136276245,
|
1666 |
+
"learning_rate": 1.3950353962281081e-06,
|
1667 |
+
"loss": 0.4763,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 2.313973268529769,
|
1672 |
+
"grad_norm": 2.168081760406494,
|
1673 |
+
"learning_rate": 1.358094132650699e-06,
|
1674 |
+
"loss": 0.4763,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 2.323693803159174,
|
1679 |
+
"grad_norm": 2.023455858230591,
|
1680 |
+
"learning_rate": 1.3215715556720722e-06,
|
1681 |
+
"loss": 0.4662,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.3334143377885783,
|
1686 |
+
"grad_norm": 2.124724864959717,
|
1687 |
+
"learning_rate": 1.285471864059053e-06,
|
1688 |
+
"loss": 0.4777,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.3431348724179832,
|
1693 |
+
"grad_norm": 2.163512945175171,
|
1694 |
+
"learning_rate": 1.2497992079620408e-06,
|
1695 |
+
"loss": 0.4714,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 2.3528554070473877,
|
1700 |
+
"grad_norm": 2.237823247909546,
|
1701 |
+
"learning_rate": 1.2145576884378995e-06,
|
1702 |
+
"loss": 0.459,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 2.362575941676792,
|
1707 |
+
"grad_norm": 2.2328405380249023,
|
1708 |
+
"learning_rate": 1.179751356978483e-06,
|
1709 |
+
"loss": 0.4678,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 2.3722964763061967,
|
1714 |
+
"grad_norm": 2.189445972442627,
|
1715 |
+
"learning_rate": 1.1453842150448513e-06,
|
1716 |
+
"loss": 0.469,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.3820170109356016,
|
1721 |
+
"grad_norm": 2.0778281688690186,
|
1722 |
+
"learning_rate": 1.1114602136072706e-06,
|
1723 |
+
"loss": 0.465,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.391737545565006,
|
1728 |
+
"grad_norm": 1.9697000980377197,
|
1729 |
+
"learning_rate": 1.0779832526909683e-06,
|
1730 |
+
"loss": 0.4806,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 2.4014580801944105,
|
1735 |
+
"grad_norm": 2.2064828872680664,
|
1736 |
+
"learning_rate": 1.0449571809277942e-06,
|
1737 |
+
"loss": 0.4572,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 2.4111786148238155,
|
1742 |
+
"grad_norm": 1.9824655055999756,
|
1743 |
+
"learning_rate": 1.0123857951137534e-06,
|
1744 |
+
"loss": 0.4551,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 2.42089914945322,
|
1749 |
+
"grad_norm": 2.0561132431030273,
|
1750 |
+
"learning_rate": 9.802728397725224e-07,
|
1751 |
+
"loss": 0.4708,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.4306196840826244,
|
1756 |
+
"grad_norm": 2.374835729598999,
|
1757 |
+
"learning_rate": 9.486220067249613e-07,
|
1758 |
+
"loss": 0.4708,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.4403402187120293,
|
1763 |
+
"grad_norm": 2.1538679599761963,
|
1764 |
+
"learning_rate": 9.174369346646888e-07,
|
1765 |
+
"loss": 0.4774,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.450060753341434,
|
1770 |
+
"grad_norm": 2.8585407733917236,
|
1771 |
+
"learning_rate": 8.867212087397626e-07,
|
1772 |
+
"loss": 0.4733,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 2.4597812879708383,
|
1777 |
+
"grad_norm": 2.1649951934814453,
|
1778 |
+
"learning_rate": 8.564783601405225e-07,
|
1779 |
+
"loss": 0.4663,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 2.469501822600243,
|
1784 |
+
"grad_norm": 2.2239134311676025,
|
1785 |
+
"learning_rate": 8.267118656936318e-07,
|
1786 |
+
"loss": 0.4698,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.4792223572296477,
|
1791 |
+
"grad_norm": 2.1840627193450928,
|
1792 |
+
"learning_rate": 7.974251474623623e-07,
|
1793 |
+
"loss": 0.4562,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 2.488942891859052,
|
1798 |
+
"grad_norm": 2.260507583618164,
|
1799 |
+
"learning_rate": 7.686215723531903e-07,
|
1800 |
+
"loss": 0.4764,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 2.4986634264884566,
|
1805 |
+
"grad_norm": 2.27022647857666,
|
1806 |
+
"learning_rate": 7.4030445172872e-07,
|
1807 |
+
"loss": 0.463,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.5083839611178615,
|
1812 |
+
"grad_norm": 2.080825090408325,
|
1813 |
+
"learning_rate": 7.124770410269971e-07,
|
1814 |
+
"loss": 0.4645,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.518104495747266,
|
1819 |
+
"grad_norm": 2.2736544609069824,
|
1820 |
+
"learning_rate": 6.851425393872535e-07,
|
1821 |
+
"loss": 0.4736,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 2.527825030376671,
|
1826 |
+
"grad_norm": 2.116166591644287,
|
1827 |
+
"learning_rate": 6.58304089282123e-07,
|
1828 |
+
"loss": 0.469,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 2.5375455650060754,
|
1833 |
+
"grad_norm": 2.1004207134246826,
|
1834 |
+
"learning_rate": 6.319647761563685e-07,
|
1835 |
+
"loss": 0.4774,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 2.54726609963548,
|
1840 |
+
"grad_norm": 2.0980539321899414,
|
1841 |
+
"learning_rate": 6.061276280721729e-07,
|
1842 |
+
"loss": 0.4585,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 2.5569866342648844,
|
1847 |
+
"grad_norm": 2.199542760848999,
|
1848 |
+
"learning_rate": 5.807956153610189e-07,
|
1849 |
+
"loss": 0.4787,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.5667071688942893,
|
1854 |
+
"grad_norm": 2.0425212383270264,
|
1855 |
+
"learning_rate": 5.559716502822087e-07,
|
1856 |
+
"loss": 0.4746,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 2.5764277035236938,
|
1861 |
+
"grad_norm": 2.1126480102539062,
|
1862 |
+
"learning_rate": 5.316585866880635e-07,
|
1863 |
+
"loss": 0.4667,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 2.5861482381530987,
|
1868 |
+
"grad_norm": 2.1631975173950195,
|
1869 |
+
"learning_rate": 5.078592196958282e-07,
|
1870 |
+
"loss": 0.4607,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 2.595868772782503,
|
1875 |
+
"grad_norm": 2.2496447563171387,
|
1876 |
+
"learning_rate": 4.845762853663416e-07,
|
1877 |
+
"loss": 0.4664,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 2.6055893074119076,
|
1882 |
+
"grad_norm": 2.1951189041137695,
|
1883 |
+
"learning_rate": 4.6181246038948524e-07,
|
1884 |
+
"loss": 0.4606,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.615309842041312,
|
1889 |
+
"grad_norm": 2.1003565788269043,
|
1890 |
+
"learning_rate": 4.395703617764624e-07,
|
1891 |
+
"loss": 0.4607,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.625030376670717,
|
1896 |
+
"grad_norm": 2.2774477005004883,
|
1897 |
+
"learning_rate": 4.1785254655893615e-07,
|
1898 |
+
"loss": 0.4635,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 2.6347509113001215,
|
1903 |
+
"grad_norm": 2.1457698345184326,
|
1904 |
+
"learning_rate": 3.9666151149506506e-07,
|
1905 |
+
"loss": 0.4658,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 2.644471445929526,
|
1910 |
+
"grad_norm": 2.298901319503784,
|
1911 |
+
"learning_rate": 3.75999692782465e-07,
|
1912 |
+
"loss": 0.4697,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.654191980558931,
|
1917 |
+
"grad_norm": 2.227304220199585,
|
1918 |
+
"learning_rate": 3.558694657781386e-07,
|
1919 |
+
"loss": 0.4815,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 2.6639125151883354,
|
1924 |
+
"grad_norm": 2.645914316177368,
|
1925 |
+
"learning_rate": 3.362731447253931e-07,
|
1926 |
+
"loss": 0.4674,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 2.67363304981774,
|
1931 |
+
"grad_norm": 2.4246609210968018,
|
1932 |
+
"learning_rate": 3.172129824877862e-07,
|
1933 |
+
"loss": 0.4735,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.6833535844471443,
|
1938 |
+
"grad_norm": 2.0741360187530518,
|
1939 |
+
"learning_rate": 2.9869117029012905e-07,
|
1940 |
+
"loss": 0.4663,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.6930741190765493,
|
1945 |
+
"grad_norm": 2.19986629486084,
|
1946 |
+
"learning_rate": 2.807098374665773e-07,
|
1947 |
+
"loss": 0.4607,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 2.7027946537059537,
|
1952 |
+
"grad_norm": 2.199263572692871,
|
1953 |
+
"learning_rate": 2.632710512158332e-07,
|
1954 |
+
"loss": 0.4633,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 2.7125151883353587,
|
1959 |
+
"grad_norm": 5.237627029418945,
|
1960 |
+
"learning_rate": 2.4637681636349106e-07,
|
1961 |
+
"loss": 0.4732,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 2.722235722964763,
|
1966 |
+
"grad_norm": 2.1454434394836426,
|
1967 |
+
"learning_rate": 2.3002907513156315e-07,
|
1968 |
+
"loss": 0.4732,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 2.7319562575941676,
|
1973 |
+
"grad_norm": 2.4052484035491943,
|
1974 |
+
"learning_rate": 2.1422970691518276e-07,
|
1975 |
+
"loss": 0.4641,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 2.741676792223572,
|
1980 |
+
"grad_norm": 3.7976326942443848,
|
1981 |
+
"learning_rate": 1.9898052806655356e-07,
|
1982 |
+
"loss": 0.4616,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 2.751397326852977,
|
1987 |
+
"grad_norm": 2.182563066482544,
|
1988 |
+
"learning_rate": 1.8428329168612703e-07,
|
1989 |
+
"loss": 0.4779,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 2.7611178614823815,
|
1994 |
+
"grad_norm": 2.0911543369293213,
|
1995 |
+
"learning_rate": 1.701396874210659e-07,
|
1996 |
+
"loss": 0.4717,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 2.7708383961117864,
|
2001 |
+
"grad_norm": 2.4781322479248047,
|
2002 |
+
"learning_rate": 1.5655134127099292e-07,
|
2003 |
+
"loss": 0.4767,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 2.780558930741191,
|
2008 |
+
"grad_norm": 2.073251485824585,
|
2009 |
+
"learning_rate": 1.435198154010592e-07,
|
2010 |
+
"loss": 0.4761,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 2.7902794653705953,
|
2015 |
+
"grad_norm": 2.240455150604248,
|
2016 |
+
"learning_rate": 1.3104660796235402e-07,
|
2017 |
+
"loss": 0.4694,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.8,
|
2022 |
+
"grad_norm": 3.2606217861175537,
|
2023 |
+
"learning_rate": 1.1913315291967209e-07,
|
2024 |
+
"loss": 0.4778,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 2.8097205346294047,
|
2029 |
+
"grad_norm": 2.1772541999816895,
|
2030 |
+
"learning_rate": 1.0778081988665978e-07,
|
2031 |
+
"loss": 0.454,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 2.819441069258809,
|
2036 |
+
"grad_norm": 2.2045230865478516,
|
2037 |
+
"learning_rate": 9.699091396835725e-08,
|
2038 |
+
"loss": 0.4542,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 2.8291616038882137,
|
2043 |
+
"grad_norm": 2.1804275512695312,
|
2044 |
+
"learning_rate": 8.676467561116064e-08,
|
2045 |
+
"loss": 0.4759,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 2.8388821385176186,
|
2050 |
+
"grad_norm": 2.245986223220825,
|
2051 |
+
"learning_rate": 7.710328046021675e-08,
|
2052 |
+
"loss": 0.4662,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 2.848602673147023,
|
2057 |
+
"grad_norm": 2.1786446571350098,
|
2058 |
+
"learning_rate": 6.800783922426557e-08,
|
2059 |
+
"loss": 0.4814,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.8583232077764276,
|
2064 |
+
"grad_norm": 2.142780303955078,
|
2065 |
+
"learning_rate": 5.947939754794796e-08,
|
2066 |
+
"loss": 0.4786,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 2.8680437424058325,
|
2071 |
+
"grad_norm": 2.2657175064086914,
|
2072 |
+
"learning_rate": 5.151893589159684e-08,
|
2073 |
+
"loss": 0.4722,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 2.877764277035237,
|
2078 |
+
"grad_norm": 2.4200682640075684,
|
2079 |
+
"learning_rate": 4.4127369418518474e-08,
|
2080 |
+
"loss": 0.4643,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 2.8874848116646414,
|
2085 |
+
"grad_norm": 2.1785573959350586,
|
2086 |
+
"learning_rate": 3.7305547889783244e-08,
|
2087 |
+
"loss": 0.4529,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 2.8972053462940464,
|
2092 |
+
"grad_norm": 2.2167816162109375,
|
2093 |
+
"learning_rate": 3.1054255566532746e-08,
|
2094 |
+
"loss": 0.4682,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 2.906925880923451,
|
2099 |
+
"grad_norm": 2.4332900047302246,
|
2100 |
+
"learning_rate": 2.537421111981908e-08,
|
2101 |
+
"loss": 0.4693,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.9166464155528553,
|
2106 |
+
"grad_norm": 2.178539514541626,
|
2107 |
+
"learning_rate": 2.026606754798266e-08,
|
2108 |
+
"loss": 0.4621,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 2.92636695018226,
|
2113 |
+
"grad_norm": 2.165919065475464,
|
2114 |
+
"learning_rate": 1.5730412101583882e-08,
|
2115 |
+
"loss": 0.4633,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 2.9360874848116647,
|
2120 |
+
"grad_norm": 2.2715532779693604,
|
2121 |
+
"learning_rate": 1.176776621588771e-08,
|
2122 |
+
"loss": 0.4776,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 2.945808019441069,
|
2127 |
+
"grad_norm": 2.2068674564361572,
|
2128 |
+
"learning_rate": 8.378585450918853e-09,
|
2129 |
+
"loss": 0.4668,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 2.955528554070474,
|
2134 |
+
"grad_norm": 2.124382495880127,
|
2135 |
+
"learning_rate": 5.563259439089752e-09,
|
2136 |
+
"loss": 0.4639,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 2.9652490886998786,
|
2141 |
+
"grad_norm": 2.2651636600494385,
|
2142 |
+
"learning_rate": 3.322111840405318e-09,
|
2143 |
+
"loss": 0.4561,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 2.974969623329283,
|
2148 |
+
"grad_norm": 2.188660144805908,
|
2149 |
+
"learning_rate": 1.6554003052554612e-09,
|
2150 |
+
"loss": 0.4633,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 2.9846901579586875,
|
2155 |
+
"grad_norm": 2.2163050174713135,
|
2156 |
+
"learning_rate": 5.633164447932382e-10,
|
2157 |
+
"loss": 0.4756,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 2.9944106925880924,
|
2162 |
+
"grad_norm": 2.2273592948913574,
|
2163 |
+
"learning_rate": 4.598580890802229e-11,
|
2164 |
+
"loss": 0.4751,
|
2165 |
+
"step": 3080
|
2166 |
+
}
|
2167 |
+
],
|
2168 |
+
"logging_steps": 10,
|
2169 |
+
"max_steps": 3084,
|
2170 |
+
"num_input_tokens_seen": 0,
|
2171 |
+
"num_train_epochs": 3,
|
2172 |
+
"save_steps": 500,
|
2173 |
+
"stateful_callbacks": {
|
2174 |
+
"TrainerControl": {
|
2175 |
+
"args": {
|
2176 |
+
"should_epoch_stop": false,
|
2177 |
+
"should_evaluate": false,
|
2178 |
+
"should_log": false,
|
2179 |
+
"should_save": true,
|
2180 |
+
"should_training_stop": true
|
2181 |
+
},
|
2182 |
+
"attributes": {}
|
2183 |
+
}
|
2184 |
+
},
|
2185 |
+
"total_flos": 7.827564814489616e+19,
|
2186 |
+
"train_batch_size": 1,
|
2187 |
+
"trial_name": null,
|
2188 |
+
"trial_params": null
|
2189 |
+
}
|
checkpoint-3084/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af366e8bf979151cfc46d09de7384543758bd91e2505e308216c4287ab014007
|
3 |
+
size 6456
|
checkpoint-3084/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
|
4 |
+
"architectures": [
|
5 |
+
"GraniteForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"attention_multiplier": 0.0078125,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"embedding_multiplier": 12.0,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 12800,
|
17 |
+
"logits_scaling": 16.0,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"mlp_bias": false,
|
20 |
+
"model_type": "granite",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_hidden_layers": 40,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"quantization_config": {
|
26 |
+
"_load_in_4bit": false,
|
27 |
+
"_load_in_8bit": true,
|
28 |
+
"bnb_4bit_compute_dtype": "float32",
|
29 |
+
"bnb_4bit_quant_storage": "uint8",
|
30 |
+
"bnb_4bit_quant_type": "fp4",
|
31 |
+
"bnb_4bit_use_double_quant": false,
|
32 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
33 |
+
"llm_int8_has_fp16_weight": false,
|
34 |
+
"llm_int8_skip_modules": null,
|
35 |
+
"llm_int8_threshold": 6.0,
|
36 |
+
"load_in_4bit": false,
|
37 |
+
"load_in_8bit": true,
|
38 |
+
"quant_method": "bitsandbytes"
|
39 |
+
},
|
40 |
+
"residual_multiplier": 0.22,
|
41 |
+
"rms_norm_eps": 1e-05,
|
42 |
+
"rope_scaling": null,
|
43 |
+
"rope_theta": 10000000.0,
|
44 |
+
"tie_word_embeddings": true,
|
45 |
+
"torch_dtype": "bfloat16",
|
46 |
+
"transformers_version": "4.46.3",
|
47 |
+
"use_cache": false,
|
48 |
+
"vocab_size": 49184
|
49 |
+
}
|
merged/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_role|>": 49153,
|
3 |
+
"<|start_of_role|>": 49152,
|
4 |
+
"<|tool_call|>": 49154
|
5 |
+
}
|
merged/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"GraniteForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"attention_multiplier": 0.0078125,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"embedding_multiplier": 12.0,
|
11 |
+
"eos_token_id": 0,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 12800,
|
16 |
+
"logits_scaling": 16.0,
|
17 |
+
"max_position_embeddings": 131072,
|
18 |
+
"mlp_bias": false,
|
19 |
+
"model_type": "granite",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_hidden_layers": 40,
|
22 |
+
"num_key_value_heads": 8,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"residual_multiplier": 0.22,
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_scaling": null,
|
27 |
+
"rope_theta": 10000000.0,
|
28 |
+
"tie_word_embeddings": true,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.46.3",
|
31 |
+
"use_cache": false,
|
32 |
+
"vocab_size": 49184
|
33 |
+
}
|
merged/generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 0,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"transformers_version": "4.46.3"
|
8 |
+
}
|
merged/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merged/pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:071e61d94737f02b8427c4eef727368d2d44e28b9b779fd2f09ff76e380d7059
|
3 |
+
size 4974924377
|
merged/pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1f5633cbbf0976809272118af68212888d758331af297257007815641ca8470
|
3 |
+
size 4991474682
|
merged/pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35ce5179842eca955de0acca571f58ba2722b3133ecd33a380bdb660baf684f4
|
3 |
+
size 4970487165
|
merged/pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79b986b2865f140d722928c3984b1d27ba31313868bdd49d62df533e5bb097a1
|
3 |
+
size 1405177130
|
merged/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16341934080
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00001-of-00004.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
323 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
332 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
341 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
350 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
359 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
|
368 |
+
"model.norm.weight": "pytorch_model-00004-of-00004.bin"
|
369 |
+
}
|
370 |
+
}
|
merged/special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|start_of_role|>",
|
4 |
+
"<|end_of_role|>",
|
5 |
+
"<|tool_call|>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<|end_of_text|>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "<|end_of_text|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<|end_of_text|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<|end_of_text|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
merged/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merged/tokenizer_config.json
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|end_of_text|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<fim_prefix>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<fim_middle>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<fim_suffix>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<fim_pad>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<filename>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<gh_stars>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<issue_start>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<issue_comment>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<issue_closed>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<jupyter_start>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<jupyter_text>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<jupyter_code>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<jupyter_output>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<empty_output>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<commit_before>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<commit_msg>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<commit_after>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<reponame>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"49152": {
|
158 |
+
"content": "<|start_of_role|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"49153": {
|
166 |
+
"content": "<|end_of_role|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"49154": {
|
174 |
+
"content": "<|tool_call|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|start_of_role|>",
|
184 |
+
"<|end_of_role|>",
|
185 |
+
"<|tool_call|>"
|
186 |
+
],
|
187 |
+
"bos_token": "<|end_of_text|>",
|
188 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
|
189 |
+
"clean_up_tokenization_spaces": true,
|
190 |
+
"eos_token": "<|end_of_text|>",
|
191 |
+
"errors": "replace",
|
192 |
+
"extra_special_tokens": {},
|
193 |
+
"model_max_length": 9223372036854775807,
|
194 |
+
"pad_token": "<|end_of_text|>",
|
195 |
+
"padding_side": "left",
|
196 |
+
"tokenizer_class": "GPT2Tokenizer",
|
197 |
+
"unk_token": "<|end_of_text|>",
|
198 |
+
"vocab_size": 49152
|
199 |
+
}
|
merged/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|start_of_role|>",
|
4 |
+
"<|end_of_role|>",
|
5 |
+
"<|tool_call|>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<|end_of_text|>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "<|end_of_text|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<|end_of_text|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<|end_of_text|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|end_of_text|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<fim_prefix>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<fim_middle>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<fim_suffix>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<fim_pad>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<filename>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<gh_stars>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<issue_start>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<issue_comment>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<issue_closed>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<jupyter_start>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<jupyter_text>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<jupyter_code>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<jupyter_output>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<empty_output>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<commit_before>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<commit_msg>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<commit_after>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<reponame>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"49152": {
|
158 |
+
"content": "<|start_of_role|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"49153": {
|
166 |
+
"content": "<|end_of_role|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"49154": {
|
174 |
+
"content": "<|tool_call|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|start_of_role|>",
|
184 |
+
"<|end_of_role|>",
|
185 |
+
"<|tool_call|>"
|
186 |
+
],
|
187 |
+
"bos_token": "<|end_of_text|>",
|
188 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
|
189 |
+
"clean_up_tokenization_spaces": true,
|
190 |
+
"eos_token": "<|end_of_text|>",
|
191 |
+
"errors": "replace",
|
192 |
+
"extra_special_tokens": {},
|
193 |
+
"model_max_length": 9223372036854775807,
|
194 |
+
"pad_token": "<|end_of_text|>",
|
195 |
+
"padding_side": "left",
|
196 |
+
"tokenizer_class": "GPT2Tokenizer",
|
197 |
+
"unk_token": "<|end_of_text|>",
|
198 |
+
"vocab_size": 49152
|
199 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|