|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: ibm-granite/granite-3.1-8b-instruct |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: granite-code-plans-3.1-8b-lora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.5.2` |
|
```yaml |
|
base_model: ibm-granite/granite-3.1-8b-instruct |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
resize_token_embeddings_to_32x: true |
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: task_decomposition_training_data_code.jsonl |
|
type: chat_template |
|
chat_template: tokenizer_default |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: value |
|
dataset_prepared_path: last_run_prepared_sft |
|
|
|
val_set_size: 0 |
|
sequence_len: 8192 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
output_dir: granite-code-plans-3.1-8b-lora |
|
|
|
wandb_project: null |
|
wandb_entity: null |
|
wandb_watch: null |
|
wandb_name: null |
|
wandb_log_model: null |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
eval_batch_size: 1 |
|
num_epochs: 3 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 1e-05 |
|
|
|
max_grad_norm: 1.0 |
|
logging_steps: 10 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
|
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
xformers_attention: |
|
flash_attention: true |
|
warmup_ratio: 0.05 |
|
eval_steps: |
|
save_strategy: epoch |
|
eval_table_size: |
|
num_processes: 8 |
|
deepspeed: |
|
weight_decay: 0.0 |
|
``` |
|
|
|
</details><br> |
|
|
|
# home/ec2-user/SageMaker/task_decomposition/trained_models/granite-code-plans-3.1-8b-lora |
|
|
|
This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the task_decomposition_training_data_code.jsonl dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 131 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |