DavidJung commited on
Commit
dd33d56
·
verified ·
1 Parent(s): 2472fa2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -2
README.md CHANGED
@@ -1,8 +1,69 @@
1
  ---
2
  tags:
3
  - clip
 
 
 
 
4
  library_name: open_clip
5
  pipeline_tag: zero-shot-image-classification
6
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
- # Model card for marqo-fashionSigLIP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
  - clip
4
+ - e-commerce
5
+ - fashion
6
+ - multimodal retrieval
7
+ - siglip
8
  library_name: open_clip
9
  pipeline_tag: zero-shot-image-classification
10
+ license: apache-2.0
11
+ datasets:
12
+ - Marqo/atlas
13
+ - Marqo/deepfashion-inshop
14
+ - Marqo/deepfashion-multimodal
15
+ - Marqo/fashion200k
16
+ - Marqo/iMaterialist
17
+ - Marqo/KAGL
18
+ - Marqo/polyvore
19
+ language:
20
+ - en
21
+ metrics:
22
+ - precision
23
+ - recall
24
+ - MRR
25
  ---
26
+ # Marqo FashionSigLIP Model Card
27
+ Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products.
28
+ The model was fine-tuned from ViT-B-16-SigLIP (webli).
29
+
30
+ **Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP)
31
+
32
+
33
+ ## Usage
34
+ The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
35
+
36
+ ```python
37
+ import open_clip
38
+ model, _, _ = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
39
+ _, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('ViT-B-16-SigLIP', 'webli')
40
+ tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
41
+ ```
42
+
43
+ ## Benchmark Results
44
+ Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below:
45
+
46
+ **Text-To-Image (Averaged across 6 datasets)**
47
+ | Model | AvgRecall | Recall@1 | Recall@10 | MRR |
48
+ |----------------------------|-------------|------------|-------------|-----------|
49
+ | FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
50
+ | Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** |
51
+ | OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
52
+ | ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
53
+ | ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 |
54
+ **Category-To-Product (Averaged across 5 datasets)**
55
+ | Model | AvgP | P@1 | P@10 | MRR |
56
+ |----------------------------|-----------|-----------|-----------|-----------|
57
+ | FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 |
58
+ | Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** |
59
+ | OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
60
+ | ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
61
+ | ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 |
62
+ **Sub-Category-To-Product (Averaged across 4 datasets)**
63
+ | Model | AvgP | P@1 | P@10 | MRR |
64
+ |----------------------------|-----------|-----------|-----------|-----------|
65
+ | FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
66
+ | Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** |
67
+ | OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
68
+ | ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
69
+ | ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |