Marqo-FashionSigLIP Model Card
Marqo-FashionSigLIP is a multimodal embedding model that provides up to 57% improvement in MRR and recall over fashion clip.
Marqo-FashionSigLIP leverages Generalised Contrastive Learning (GCL) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. The model was fine-tuned from ViT-B-16-SigLIP (webli).
Github Page: Marqo-FashionCLIP
Blog: Marqo Blog
Usage
Hugging Face
The model can be loaded with AutoModel by
from transformers import AutoModel, AutoProcessor
model = AutoModel.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
import torch
from PIL import Image
image = [Image.open("docs/fashion-hippo.png")]
text = ["a hat", "a t-shirt", "shoes"]
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")
with torch.no_grad():
image_features = model.get_image_features(processed['pixel_values'], normalize=True)
text_features = model.get_text_features(processed['input_ids'], normalize=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
# [0.98379946, 0.01294010, 0.00326044]
OpenCLIP
The model can be seamlessly used with OpenCLIP by
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
import torch
from PIL import Image
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
# [0.9860219105287394, 0.00777916527489097, 0.006198924196369721]
Transformers.js
You can also run the model in JavaScript with the Transformers.js library.
First, install it from NPM using:
npm i @huggingface/transformers
Then, compute embeddings as follows:
import { SiglipTextModel, SiglipVisionModel, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';
const model_id = 'Marqo/marqo-fashionSigLIP';
// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const text_model = await SiglipTextModel.from_pretrained(model_id);
// Load processor and vision model
const processor = await AutoProcessor.from_pretrained(model_id);
const vision_model = await SiglipVisionModel.from_pretrained(model_id);
// Run tokenization
const texts = ['a hat', 'a t-shirt', 'shoes'];
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
// Compute text embeddings
const { text_embeds } = await text_model(text_inputs);
// Read image and run processor
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
const image_inputs = await processor(image);
// Compute vision embeddings
const { image_embeds } = await vision_model(image_inputs);
// Compute similarity scores
const normalized_text_embeds = text_embeds.normalize().tolist();
const normalized_image_embeds = image_embeds.normalize().tolist()[0];
const text_probs = softmax(normalized_text_embeds.map((text_embed) =>
100.0 * dot(normalized_image_embeds, text_embed)
));
console.log(text_probs);
// [0.9860219105287394, 0.00777916527489097, 0.006198924196369721]
Benchmark Results
Average evaluation results on 6 public multimodal fashion datasets (Atlas, DeepFashion (In-shop), DeepFashion (Multimodal), Fashion200k, KAGL, and Polyvore) are reported below:
Text-To-Image (Averaged across 6 datasets)
Model | AvgRecall | Recall@1 | Recall@10 | MRR |
---|---|---|---|---|
Marqo-FashionSigLIP | 0.231 | 0.121 | 0.340 | 0.239 |
FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 |
Category-To-Product (Averaged across 5 datasets)
Model | AvgP | P@1 | P@10 | MRR |
---|---|---|---|---|
Marqo-FashionSigLIP | 0.737 | 0.758 | 0.716 | 0.812 |
FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 |
OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 |
Sub-Category-To-Product (Averaged across 4 datasets)
Model | AvgP | P@1 | P@10 | MRR |
---|---|---|---|---|
Marqo-FashionSigLIP | 0.725 | 0.767 | 0.683 | 0.811 |
FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |
- Downloads last month
- 4,449