(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0
.
CoTy-platypus-ko
Poly-platypus-ko + CoT = CoTy-platypus-ko
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
CoTy-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.
Repo Link
Github CoTy-platypus-ko: CoTy-platypus-ko
Base Model
Polyglot-ko-12.8b
Fine-tuning method
Methodology by KO-Platypus2+CoT-llama2-ko
Training Dataset
I use KoCoT_2000.
I use A100 GPU 40GB and COLAB, when trianing.
Model Bechmark1
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
CoTy-platypus-ko-12.8b(ours) | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 |
hyunseoki/ko-en-llama2-13b | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 |
momo/polyglot-ko-12.8b-Chat-QLoRA-Merge | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 |
KoT-platypus2-7B | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
DopeorNope/COLA3-7B | 45.61 | 39.16 | 50.98 | 35.21 | 37.81 | 64.91 |
Compare with Top 4 SOTA models. (update: 10/03)
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "MarkrAI/kyujin-CoTy-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
Readme format: kyujinpy/KoT-platypus2-7B
- Downloads last month
- 2,258
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.