|
--- |
|
library_name: transformers |
|
language: |
|
- ar |
|
license: mit |
|
base_model: facebook/s2t-medium-mustc-multilingual-st |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- darija-c |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: Finetuned-facebook-s2t-for-darija-speech-translation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Finetuned-facebook-s2t-for-darija-speech-translation |
|
|
|
This model is a fine-tuned version of [facebook/s2t-medium-mustc-multilingual-st](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) on the Darija-C dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.7855 |
|
- Bleu: 0.0032 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 9.1689 | 12.5 | 50 | 8.4431 | 0.0 | |
|
| 7.9984 | 25.0 | 100 | 7.6555 | 0.0 | |
|
| 7.4717 | 37.5 | 150 | 7.2774 | 0.0 | |
|
| 7.2484 | 50.0 | 200 | 7.1061 | 0.0 | |
|
| 7.0982 | 62.5 | 250 | 6.9703 | 0.0 | |
|
| 6.9724 | 75.0 | 300 | 6.8526 | 0.0011 | |
|
| 6.8564 | 87.5 | 350 | 6.7225 | 0.0034 | |
|
| 6.7332 | 100.0 | 400 | 6.6144 | 0.0034 | |
|
| 6.6511 | 112.5 | 450 | 6.5264 | 0.0034 | |
|
| 6.5283 | 125.0 | 500 | 6.4174 | 0.0034 | |
|
| 6.4477 | 137.5 | 550 | 6.3187 | 0.0034 | |
|
| 6.3455 | 150.0 | 600 | 6.2208 | 0.0031 | |
|
| 6.2683 | 162.5 | 650 | 6.0831 | 0.0034 | |
|
| 6.1757 | 175.0 | 700 | 6.0449 | 0.0032 | |
|
| 6.1017 | 187.5 | 750 | 5.9507 | 0.0034 | |
|
| 6.0438 | 200.0 | 800 | 5.8899 | 0.0032 | |
|
| 5.9752 | 212.5 | 850 | 5.8447 | 0.0034 | |
|
| 5.9657 | 225.0 | 900 | 5.8105 | 0.0032 | |
|
| 5.925 | 237.5 | 950 | 5.7858 | 0.0032 | |
|
| 5.9142 | 250.0 | 1000 | 5.7855 | 0.0032 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.21.0 |
|
|