ewc_stabilised_no_date_lambda0.4

This model is a fine-tuned version of masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1841
  • F1: 0.8384
  • Precision: 0.8348
  • Recall: 0.8421
  • Accuracy: 0.9649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.3292 0.9993 701 0.1360 0.7966 0.7971 0.7961 0.9564
0.1207 2.0 1403 0.1172 0.8235 0.8146 0.8326 0.9623
0.0891 2.9993 2104 0.1133 0.8348 0.8307 0.8390 0.9640
0.0684 4.0 2806 0.1172 0.8386 0.8411 0.8362 0.9650
0.0527 4.9993 3507 0.1268 0.8371 0.8302 0.8441 0.9645
0.0414 6.0 4209 0.1425 0.8390 0.8329 0.8453 0.9649
0.0329 6.9993 4910 0.1532 0.8385 0.8374 0.8396 0.9647
0.0263 8.0 5612 0.1650 0.8359 0.8287 0.8433 0.9645
0.0222 8.9993 6313 0.1793 0.8396 0.8398 0.8395 0.9652
0.019 9.9929 7010 0.1841 0.8384 0.8348 0.8421 0.9649

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
559M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Mardiyyah/ewc_stabilised_no_date_lambda0.4

Finetuned
(3)
this model