MarPla's picture
End of training
d72fc78 verified
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: Physical_MainSections_PegasusLargeModel
    results: []

Physical_MainSections_PegasusLargeModel

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.4319
  • Rouge1: 45.5252
  • Rouge2: 14.1464
  • Rougel: 31.4229
  • Rougelsum: 41.3858
  • Bertscore Precision: 79.0611
  • Bertscore Recall: 82.0495
  • Bertscore F1: 80.5201
  • Bleu: 0.0938
  • Gen Len: 192.3440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.7243 0.0622 100 6.4316 35.9433 8.9384 23.9375 31.9391 75.7874 79.9159 77.7871 0.0555 192.3440
6.3971 0.1244 200 6.0845 38.3256 10.9703 27.2908 34.7128 76.6783 80.6127 78.5859 0.0706 192.3440
6.2761 0.1866 300 5.9553 40.7647 12.2223 28.45 36.7148 77.1954 81.0751 79.0774 0.0807 192.3440
6.0434 0.2489 400 5.8472 42.1277 12.5854 29.1212 37.9861 77.5784 81.2781 79.3756 0.0839 192.3440
6.0126 0.3111 500 5.7596 42.3736 12.8329 29.4128 38.3711 77.6752 81.4031 79.4859 0.0852 192.3440
5.9705 0.3733 600 5.6999 42.782 13.0394 29.6295 38.5859 77.6255 81.462 79.4875 0.0864 192.3440
5.8576 0.4355 700 5.6527 43.1782 13.1374 29.8607 39.0053 77.9976 81.5732 79.7363 0.0872 192.3440
5.8948 0.4977 800 5.6187 43.6171 13.2343 30.0467 39.4409 78.0197 81.5872 79.7542 0.0869 192.3440
5.8581 0.5599 900 5.5710 44.6985 13.6521 30.6142 40.4634 78.5325 81.7996 80.1244 0.0900 192.3440
5.669 0.6222 1000 5.5349 45.0937 13.8618 30.8512 40.8417 78.6878 81.9065 80.2571 0.0919 192.3440
5.6482 0.6844 1100 5.5042 45.0894 13.9336 31.0576 41.0813 78.9344 81.9388 80.4013 0.0927 192.3440
5.8084 0.7466 1200 5.4730 44.4944 13.6928 30.9811 40.6992 78.8689 81.8742 80.3361 0.0910 192.3440
5.6847 0.8088 1300 5.4582 45.1825 14.0216 31.2665 41.128 79.0426 81.9989 80.4862 0.0928 192.3440
5.6545 0.8710 1400 5.4444 45.5502 14.1713 31.3938 41.3877 79.0623 82.0733 80.5322 0.0942 192.3440
5.5869 0.9332 1500 5.4363 45.545 14.1516 31.4241 41.4205 79.1346 82.0625 80.5647 0.0939 192.3440
5.7046 0.9955 1600 5.4319 45.5252 14.1464 31.4229 41.3858 79.0611 82.0495 80.5201 0.0938 192.3440

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.2.1
  • Tokenizers 0.19.1