MarPla's picture
End of training
a4a72e6 verified
|
raw
history blame
3.68 kB
metadata
base_model: google/pegasus-large
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: Health_MainSections_PegasusLargeModel
    results: []

Health_MainSections_PegasusLargeModel

This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.2414
  • Rouge1: 50.1795
  • Rouge2: 17.4664
  • Rougel: 33.5547
  • Rougelsum: 45.6086
  • Bertscore Precision: 79.0557
  • Bertscore Recall: 82.3708
  • Bertscore F1: 80.6737
  • Bleu: 0.1302
  • Gen Len: 230.3297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.6491 0.0835 100 6.2799 39.9618 11.2774 25.6909 36.1285 76.1843 80.1799 78.1239 0.0837 230.3297
6.2174 0.1671 200 5.9405 42.5055 13.4081 28.4622 38.6545 76.9801 80.932 78.9 0.1013 230.3297
6.0623 0.2506 300 5.7883 44.9098 14.7089 29.9801 40.7648 77.6093 81.3921 79.4496 0.1118 230.3297
5.8987 0.3342 400 5.6549 46.317 15.8065 30.9576 41.9584 77.7634 81.688 79.6712 0.1182 230.3297
5.7395 0.4177 500 5.5221 47.7104 16.4157 31.8171 43.3162 78.0166 81.8334 79.8733 0.1221 230.3297
5.7026 0.5013 600 5.4323 47.7147 16.492 32.171 43.3503 78.266 81.9538 80.0615 0.1225 230.3297
5.6432 0.5848 700 5.3587 49.1073 17.0141 32.8254 44.5003 78.7001 82.1587 80.3864 0.1264 230.3297
5.6131 0.6684 800 5.3146 49.7061 17.3206 33.0712 45.1323 78.8811 82.2757 80.5371 0.1290 230.3297
5.5168 0.7519 900 5.2820 50.0791 17.439 33.333 45.4496 79.031 82.3405 80.6464 0.1300 230.3297
5.5748 0.8355 1000 5.2569 50.176 17.4666 33.4584 45.398 79.0421 82.3676 80.6652 0.1301 230.3297
5.4357 0.9190 1100 5.2414 50.1795 17.4664 33.5547 45.6086 79.0557 82.3708 80.6737 0.1302 230.3297

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.2.1
  • Tokenizers 0.19.1