ManojAlexender's picture
End of training
679dd57 verified
metadata
base_model: ManojAlexender/roberta-base_MLM
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Trail_run_final_roberta
    results: []

Trail_run_final_roberta

This model is a fine-tuned version of ManojAlexender/roberta-base_MLM on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2322
  • Accuracy: 0.9163
  • F1: 0.9159
  • Precision: 0.9181
  • Recall: 0.9163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4057 0.01 100 0.3391 0.8808 0.8795 0.8865 0.8808
0.3447 0.01 200 0.3667 0.8470 0.8417 0.8728 0.8470
0.3202 0.02 300 0.3871 0.8689 0.8656 0.8869 0.8689
0.2354 0.03 400 0.4020 0.8597 0.8557 0.8805 0.8597
0.3268 0.04 500 0.3679 0.8318 0.8252 0.8610 0.8318
0.2771 0.04 600 0.2474 0.8924 0.8912 0.8982 0.8924
0.2288 0.05 700 0.2297 0.9103 0.9103 0.9103 0.9103
0.2307 0.06 800 0.2633 0.8944 0.8939 0.8957 0.8944
0.3375 0.06 900 0.2458 0.8988 0.8979 0.9024 0.8988
0.26 0.07 1000 0.2428 0.9071 0.9065 0.9099 0.9071
0.274 0.08 1100 0.2395 0.9035 0.9036 0.9036 0.9035
0.2513 0.09 1200 0.4167 0.8569 0.8532 0.8751 0.8569
0.2281 0.09 1300 0.3968 0.8633 0.8598 0.8815 0.8633
0.249 0.1 1400 0.2548 0.8804 0.8783 0.8920 0.8804
0.1986 0.11 1500 0.2590 0.9020 0.9020 0.9021 0.9020
0.26 0.11 1600 0.3084 0.8804 0.8784 0.8913 0.8804
0.2272 0.12 1700 0.2827 0.8884 0.8870 0.8956 0.8884
0.2312 0.13 1800 0.2373 0.9067 0.9068 0.9068 0.9067
0.2563 0.14 1900 0.2628 0.9008 0.9008 0.9011 0.9008
0.1876 0.14 2000 0.2744 0.8852 0.8840 0.8906 0.8852
0.284 0.15 2100 0.2751 0.8928 0.8914 0.9002 0.8928
0.203 0.16 2200 0.2406 0.9031 0.9034 0.9054 0.9031
0.2278 0.16 2300 0.2378 0.9115 0.9112 0.9123 0.9115
0.2204 0.17 2400 0.4288 0.8677 0.8646 0.8837 0.8677
0.2323 0.18 2500 0.2331 0.9115 0.9113 0.9118 0.9115
0.2508 0.19 2600 0.2932 0.8956 0.8955 0.8955 0.8956
0.2838 0.19 2700 0.2454 0.9035 0.9036 0.9037 0.9035
0.221 0.2 2800 0.3153 0.8800 0.8783 0.8881 0.8800
0.2167 0.21 2900 0.3200 0.8745 0.8724 0.8838 0.8745
0.2336 0.21 3000 0.2842 0.8880 0.8866 0.8947 0.8880
0.2653 0.22 3100 0.2353 0.9059 0.9059 0.9059 0.9059
0.2953 0.23 3200 0.2374 0.9051 0.9044 0.9087 0.9051
0.174 0.24 3300 0.2810 0.8964 0.8954 0.9006 0.8964
0.2184 0.24 3400 0.2127 0.9127 0.9125 0.9131 0.9127
0.2519 0.25 3500 0.2286 0.9083 0.9085 0.9126 0.9083
0.2326 0.26 3600 0.2904 0.8948 0.8944 0.8956 0.8948
0.1862 0.26 3700 0.2203 0.9259 0.9258 0.9259 0.9259
0.2098 0.27 3800 0.2350 0.9075 0.9074 0.9077 0.9075
0.2152 0.28 3900 0.2319 0.9063 0.9063 0.9063 0.9063
0.3154 0.29 4000 0.2184 0.9071 0.9070 0.9072 0.9071
0.1679 0.29 4100 0.4091 0.8764 0.8740 0.8892 0.8764
0.1535 0.3 4200 0.2574 0.9091 0.9090 0.9092 0.9091
0.1487 0.31 4300 0.2510 0.9063 0.9060 0.9072 0.9063
0.2337 0.31 4400 0.2163 0.9131 0.9128 0.9138 0.9131
0.3144 0.32 4500 0.2627 0.9051 0.9047 0.9062 0.9051
0.2487 0.33 4600 0.2557 0.8992 0.8985 0.9014 0.8992
0.2194 0.34 4700 0.2363 0.9159 0.9157 0.9163 0.9159
0.2602 0.34 4800 0.2374 0.9051 0.9053 0.9058 0.9051
0.2353 0.35 4900 0.2482 0.9059 0.9057 0.9062 0.9059
0.2107 0.36 5000 0.2903 0.9008 0.8998 0.9052 0.9008
0.2364 0.36 5100 0.2901 0.8760 0.8746 0.8815 0.8760
0.2009 0.37 5200 0.2491 0.9091 0.9086 0.9116 0.9091
0.2469 0.38 5300 0.3049 0.8992 0.8988 0.9000 0.8992
0.162 0.39 5400 0.2847 0.9059 0.9055 0.9071 0.9059
0.24 0.39 5500 0.2146 0.9135 0.9132 0.9143 0.9135
0.2667 0.4 5600 0.2379 0.9075 0.9072 0.9085 0.9075
0.2165 0.41 5700 0.2662 0.8844 0.8829 0.8915 0.8844
0.2007 0.41 5800 0.2539 0.9047 0.9039 0.9087 0.9047
0.221 0.42 5900 0.2272 0.9047 0.9046 0.9047 0.9047
0.2028 0.43 6000 0.3618 0.8669 0.8638 0.8826 0.8669
0.3003 0.44 6100 0.2454 0.9071 0.9071 0.9071 0.9071
0.2025 0.44 6200 0.2103 0.9175 0.9175 0.9175 0.9175
0.253 0.45 6300 0.2470 0.8992 0.8981 0.9044 0.8992
0.1955 0.46 6400 0.2887 0.9000 0.8992 0.9031 0.9000
0.1621 0.46 6500 0.2245 0.9151 0.9149 0.9155 0.9151
0.2532 0.47 6600 0.2493 0.8912 0.8907 0.8924 0.8912
0.1898 0.48 6700 0.2313 0.9083 0.9082 0.9083 0.9083
0.1858 0.49 6800 0.2514 0.9031 0.9026 0.9049 0.9031
0.1977 0.49 6900 0.2155 0.9167 0.9166 0.9167 0.9167
0.2247 0.5 7000 0.2280 0.9059 0.9056 0.9070 0.9059
0.1931 0.51 7100 0.2431 0.9047 0.9042 0.9066 0.9047
0.1746 0.51 7200 0.2400 0.9155 0.9152 0.9164 0.9155
0.2579 0.52 7300 0.2707 0.9107 0.9102 0.9125 0.9107
0.2139 0.53 7400 0.2625 0.8920 0.8910 0.8965 0.8920
0.2703 0.54 7500 0.2500 0.8980 0.8972 0.9013 0.8980
0.1412 0.54 7600 0.2210 0.9159 0.9158 0.9160 0.9159
0.2382 0.55 7700 0.2712 0.9028 0.9020 0.9064 0.9028
0.2498 0.56 7800 0.2200 0.9195 0.9193 0.9197 0.9195
0.2002 0.56 7900 0.3254 0.8832 0.8813 0.8935 0.8832
0.2359 0.57 8000 0.3023 0.8928 0.8918 0.8973 0.8928
0.2193 0.58 8100 0.2837 0.8892 0.8875 0.8988 0.8892
0.2436 0.59 8200 0.2221 0.9143 0.9142 0.9143 0.9143
0.1704 0.59 8300 0.2402 0.9123 0.9119 0.9136 0.9123
0.1979 0.6 8400 0.2722 0.8912 0.8896 0.9003 0.8912
0.2476 0.61 8500 0.2165 0.9211 0.9209 0.9216 0.9211
0.1996 0.61 8600 0.2374 0.9151 0.9148 0.9163 0.9151
0.2278 0.62 8700 0.2357 0.9079 0.9080 0.9083 0.9079
0.1625 0.63 8800 0.2205 0.9231 0.9228 0.9237 0.9231
0.2197 0.64 8900 0.3041 0.9020 0.9011 0.9063 0.9020
0.1868 0.64 9000 0.2280 0.9207 0.9205 0.9212 0.9207
0.2979 0.65 9100 0.2931 0.8948 0.8935 0.9011 0.8948
0.1973 0.66 9200 0.2322 0.9163 0.9159 0.9181 0.9163

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1