|
--- |
|
license: creativeml-openrail-m |
|
language: |
|
- en |
|
metrics: |
|
- bleu |
|
--- |
|
|
|
<h3 align='center' style='font-size: 24px;'>Blazzing Fast Tiny Vision Language Model</h3> |
|
|
|
|
|
<p align='center', style='font-size: 16px;' >A Custom 3B parameter Model. Built by <a href="https://www.linkedin.com/in/manishkumarthota/">@Manish</a> The model is released for research purposes only, commercial use is not allowed. </p> |
|
|
|
## How to use |
|
|
|
|
|
**Install dependencies** |
|
```bash |
|
pip install transformers # latest version is ok, but we recommend v4.31.0 |
|
pip install -q pillow accelerate einops |
|
``` |
|
|
|
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). |
|
|
|
```Python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
|
|
torch.set_default_device("cuda") |
|
|
|
#Create model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"ManishThota/CustomModel", |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("ManishThota/CustomModel", trust_remote_code=True) |
|
|
|
#function to generate the answer |
|
def predict(question, image_path): |
|
#Set inputs |
|
text = f"USER: <image>\n{question}? ASSISTANT:" |
|
image = Image.open(image_path) |
|
|
|
input_ids = tokenizer(text, return_tensors='pt').input_ids.to('cuda') |
|
image_tensor = model.image_preprocess(image) |
|
|
|
#Generate the answer |
|
output_ids = model.generate( |
|
input_ids, |
|
max_new_tokens=25, |
|
images=image_tensor, |
|
use_cache=True)[0] |
|
|
|
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() |
|
|
|
``` |