File size: 2,405 Bytes
c033bc6 1e8fcbf 66a4b83 1e8fcbf 7b6dadc 1e8fcbf f696c01 1e8fcbf 66a4b83 1e8fcbf 420cfad 66a4b83 420cfad 18da287 420cfad 1e8fcbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: creativeml-openrail-m
language:
- en
metrics:
- bleu
---
<h1 align='center' style='font-size: 36px; font-weight: bold;'>Sparrow</h1>
<h3 align='center' style='font-size: 24px;'>Blazzing Fast Tiny Vision Language Model</h3>
<p align="center">
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F650c7fbb8ffe1f53bdbe1aec%2FDTjDSq2yG-5Cqnk6giPFq.jpeg%26quot%3B%3C%2Fspan%3E width="50%" height="auto"/>
</p>
<p align='center', style='font-size: 16px;' >A Custom 3B parameter Model Enhanced for Educational Contexts: This specialized model integrates slide-text pairs from machine learning classes, leveraging a unique training approach. It connects a frozen pre-trained vision encoder (SigLip) with a frozen language model (Phi-2) through an innovative projector. The model employs attention mechanisms and language modeling loss to deeply understand and generate educational content, specifically tailored to the context of machine learning education. Built by <a href="https://www.linkedin.com/in/manishkumarthota/">@Manish</a> The model is released for research purposes only, commercial use is not allowed. </p>
## How to use
**Install dependencies**
```bash
pip install transformers # latest version is ok, but we recommend v4.31.0
pip install -q pillow accelerate einops
```
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA).
```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
torch.set_default_device("cuda")
#Create model
model = AutoModelForCausalLM.from_pretrained(
"ManishThota/Sparrow",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
#function to generate the answer
def predict(question, image_path):
#Set inputs
text = f"USER: <image>\n{question}? ASSISTANT:"
image = Image.open(image_path)
input_ids = tokenizer(text, return_tensors='pt').input_ids.to('cuda')
image_tensor = model.image_preprocess(image)
#Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=25,
images=image_tensor,
use_cache=True)[0]
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
``` |