ManishThota
commited on
Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: creativeml-openrail-m
|
3 |
---
|
4 |
+
---
|
5 |
+
<h1 align='center' style='font-size: 36px; font-weight: bold;'>Sparrow</h1>
|
6 |
+
<h3 align='center' style='font-size: 24px;'>Tiny Vision Language Model</h3>
|
7 |
+
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/650c7fbb8ffe1f53bdbe1aec/DTjDSq2yG-5Cqnk6giPFq.jpeg" width="50%" height="auto"/>
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p align='center' style='font-size: 16px;'>
|
14 |
+
3B parameter model built by <a href="https://www.linkedin.com/in/manishkumarthota/">@Manish</a> using SigLIP, Phi-2, Language Modeling Loss, LLaVa data, and Custom setting training dataset.
|
15 |
+
The model is released for research purposes only, commercial use is not allowed.
|
16 |
+
</p>
|
17 |
+
|
18 |
+
Pretraining is done and if at all in future we are adding more question answer pairs, we can just do lora finetuning on top of this model
|
19 |
+
|
20 |
+
## How to use
|
21 |
+
|
22 |
+
|
23 |
+
**Install dependencies**
|
24 |
+
```bash
|
25 |
+
pip install transformers # latest version is ok, but we recommend v4.31.0
|
26 |
+
pip install -q pillow accelerate einops
|
27 |
+
```
|
28 |
+
|
29 |
+
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA).
|
30 |
+
|
31 |
+
```Python
|
32 |
+
import torch
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
from PIL import Image
|
35 |
+
|
36 |
+
torch.set_default_device("cuda")
|
37 |
+
|
38 |
+
#Create model
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
"ManishThota/Sparrow",
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
device_map="auto",
|
43 |
+
trust_remote_code=True)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)
|
45 |
+
|
46 |
+
#Set inputs
|
47 |
+
text = "A chat between a curious user and an artificial intelligence assistant. USER: <image>\nCan you explain the slide? ASSISTANT:"
|
48 |
+
image = Image.open("images/week_02_page_02")
|
49 |
+
|
50 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
51 |
+
image_tensor = model.image_preprocess(image)
|
52 |
+
|
53 |
+
#Generate the answer
|
54 |
+
output_ids = model.generate(
|
55 |
+
input_ids,
|
56 |
+
max_new_tokens=1500,
|
57 |
+
images=image_tensor,
|
58 |
+
use_cache=True)[0]
|
59 |
+
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
60 |
+
```
|