Sambert - embeddings model for Hebrew

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

sentence-transformer for Hebrew

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer, util
sentences = ["ืืžื ื”ืœื›ื” ืœื’ืŸ", "ืื‘ื ื”ืœืš ืœื’ืŸ", "ื™ืจืงื•ื ื™ ืงื•ื ื” ืœื ื• ืคื™ืฆื•ืช"]

model = SentenceTransformer('MPA/sambert')
embeddings = model.encode(sentences)
print(util.cos_sim(embeddings, embeddings))

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["ืืžื ื”ืœื›ื” ืœื’ืŸ", "ืื‘ื ื”ืœืš ืœื’ืŸ", "ื™ืจืงื•ื ื™ ืงื•ื ื” ืœื ื• ืคื™ืฆื•ืช"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('MPA/sambert')
model = AutoModel.from_pretrained('MPA/sambert')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

This model were trained in 2 stages:

  1. Unsupervised - ~2M paragraphs with 'MultipleNegativesRankingLoss' on cls-token
  2. Supervised - ~70k paragraphs with 'CosineSimilarityLoss' The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 11672 with parameters:

{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 500,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)

Citing & Authors

Based on

@misc{gueta2022large, title={Large Pre-Trained Models with Extra-Large Vocabularies: A Contrastive Analysis of Hebrew BERT Models and a New One to Outperform Them All}, author={Eylon Gueta and Avi Shmidman and Shaltiel Shmidman and Cheyn Shmuel Shmidman and Joshua Guedalia and Moshe Koppel and Dan Bareket and Amit Seker and Reut Tsarfaty}, year={2022}, eprint={2211.15199}, archivePrefix={arXiv}, primaryClass={cs.CL} }

Downloads last month
387
Safetensors
Model size
184M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using MPA/sambert 1