ML-777's picture
Model save
e3f80d5 verified
metadata
library_name: peft
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-lora-food101
    results: []

Visualize in Weights & Biases

vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5267
  • Accuracy: 0.8573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0269 0.9958 118 0.6697 0.8207
0.9299 2.0 237 0.5993 0.8387
0.6699 2.9958 355 0.5610 0.8473
0.6616 4.0 474 0.5421 0.8543
0.5378 4.9789 590 0.5267 0.8573

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3