MISHANM/Marathi_text_generation_eng_marathi_Llama3_8B_instruction

This model is fine-tuned for the Marathi language, capable of answering queries and translating text Between English and Marathi. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.

Model Details

  1. Language: Marathi
  2. Tasks: Question Answering, Translation (English to Marathi)
  3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct

Training Details

The model is trained on approx 3517K instruction samples.

  1. GPUs: 4*AMD Radeon™ PRO V620

Inference with HuggingFace


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Marathi_text_generation_eng_marathi_Llama3_8B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path)

# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
   print(f"Using {torch.cuda.device_count()} GPUs")
   model = torch.nn.DataParallel(model)

# Move the model to the appropriate device
model.to(device)

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a Marathi language expert and linguist, with same knowledge give answers in Marathi language. ",
       },
       {"role": "user", "content": prompt}
   ]

   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
   output = model.module.generate(  # Use model.module for DataParallel
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Write a poem on LLM."""
translated_text = generate_text(prompt)
print(translated_text)

Citation Information

@misc{MISHANM/Marathi_text_generation_eng_marathi_Llama3_8B_instruction,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Marathi Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
  • PEFT 0.12.0
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for MISHANM/Marathi_text_generation_eng_marathi_Llama3_8B_instruction

Adapter
(661)
this model

Dataset used to train MISHANM/Marathi_text_generation_eng_marathi_Llama3_8B_instruction