|
--- |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
library_name: peft |
|
datasets: |
|
- AgentWaller/german-oasst1-qa-format |
|
--- |
|
|
|
# MISHANM/German_text_generation_Llama3_8B_instruction |
|
|
|
This model is fine-tuned for the German language, capable of answering queries and translating text Between English and German. It leverages advanced natural language processing techniques to provide accurate and context-aware responses. |
|
|
|
|
|
|
|
## Model Details |
|
1. Language: German |
|
2. Tasks: Question Answering, Translation (English to German) |
|
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct |
|
|
|
|
|
|
|
# Training Details |
|
|
|
The model is trained on approx 10K instruction samples. |
|
1. GPUs: 4*AMD Radeon™ PRO V620 |
|
|
|
|
|
|
|
|
|
## Inference with HuggingFace |
|
```python3 |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Set the device |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
# Load the fine-tuned model and tokenizer |
|
model_path = "MISHANM/German_text_generation_Llama3_8B_instruction" |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
|
# Wrap the model with DataParallel if multiple GPUs are available |
|
if torch.cuda.device_count() > 1: |
|
print(f"Using {torch.cuda.device_count()} GPUs") |
|
model = torch.nn.DataParallel(model) |
|
|
|
# Move the model to the appropriate device |
|
model.to(device) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
# Function to generate text |
|
def generate_text(prompt, max_length=1000, temperature=0.9): |
|
# Format the prompt according to the chat template |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a German language expert and linguist, with same knowledge give answers in German language. ", |
|
}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Apply the chat template |
|
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>" |
|
|
|
# Tokenize and generate output |
|
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) |
|
output = model.module.generate( # Use model.module for DataParallel |
|
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True |
|
) |
|
return tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
# Example usage |
|
prompt = """Write a short note on NLP.""" |
|
translated_text = generate_text(prompt) |
|
print(translated_text) |
|
|
|
|
|
``` |
|
|
|
## Citation Information |
|
``` |
|
@misc{MISHANM/German_text_generation_Llama3_8B_instruction, |
|
author = {Mishan Maurya}, |
|
title = {Introducing Fine Tuned LLM for German Language}, |
|
year = {2024}, |
|
publisher = {Hugging Face}, |
|
journal = {Hugging Face repository}, |
|
|
|
} |
|
``` |
|
|
|
|
|
- PEFT 0.12.0 |