Nomic v1.5 Chatbot Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MANMEET75/nomic-embed-text-v1.5-Chatbot-matryoshka")
# Run inference
sentences = [
    "I can understand and respond in multiple Indian regional languages. Feel free to communicate with me in the language you're most comfortable with.",
    'Bharti, what languages can you understand and respond to?',
    'Bharti, can you provide tips for effective online communication?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.907
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.907
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.907
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.951
cosine_mrr@10 0.9419
cosine_map@100 0.9428

Information Retrieval

Metric Value
cosine_accuracy@1 0.907
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.907
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.907
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.951
cosine_mrr@10 0.9419
cosine_map@100 0.9426

Information Retrieval

Metric Value
cosine_accuracy@1 0.8837
cosine_accuracy@3 0.9535
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.8837
cosine_precision@3 0.3178
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.8837
cosine_recall@3 0.9535
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9378
cosine_mrr@10 0.9244
cosine_map@100 0.9247

Information Retrieval

Metric Value
cosine_accuracy@1 0.8837
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.8837
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.8837
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9394
cosine_mrr@10 0.9264
cosine_map@100 0.9264

Information Retrieval

Metric Value
cosine_accuracy@1 0.9302
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.9302
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.9302
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9596
cosine_mrr@10 0.9535
cosine_map@100 0.9538

Training Details

Training Dataset

Unnamed Dataset

  • Size: 530 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 11 tokens
    • mean: 35.33 tokens
    • max: 99 tokens
    • min: 7 tokens
    • mean: 17.3 tokens
    • max: 29 tokens
  • Samples:
    positive anchor
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. What are the benefits of the BharatPe speaker?
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. What advantages does the BharatPe speaker offer?
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. Can you outline the benefits of using the BharatPe speaker?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.9412 1 - 0.7883 0.8148 0.8134 0.7657 0.8234
1.8824 2 - 0.8953 0.8956 0.8859 0.8273 0.8855
2.8235 3 - 0.9167 0.9150 0.9310 0.8926 0.9292
3.7647 4 - 0.9205 0.9208 0.9348 0.9073 0.9349
4.7059 5 - 0.9244 0.9247 0.9348 0.9151 0.9388
5.6471 6 - 0.9244 0.9247 0.9387 0.9189 0.9389
6.5882 7 - 0.9244 0.9247 0.9387 0.9189 0.9389
7.5294 8 - 0.9244 0.9247 0.9388 0.9538 0.9428
8.4706 9 - 0.9264 0.9247 0.9426 0.9538 0.9428
9.4118 10 1.9538 0.9264 0.9247 0.9426 0.9538 0.9428
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MANMEET75/nomic-embed-text-v1.5-Chatbot-matryoshka

Finetuned
(15)
this model

Evaluation results