damage_trigger_effect_2023-12-19_14_11

This model is a fine-tuned version of Babelscape/wikineural-multilingual-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6940
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.8550

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 34 0.6583 0.0 0.0 0.0 0.8158
No log 2.0 68 0.5418 0.0 0.0 0.0 0.8094
No log 3.0 102 0.4800 0.0 0.0 0.0 0.8418
No log 4.0 136 0.4383 0.0 0.0 0.0 0.8579
No log 5.0 170 0.4956 0.0 0.0 0.0 0.8449
No log 6.0 204 0.5156 0.0 0.0 0.0 0.8591
No log 7.0 238 0.5127 0.0 0.0 0.0 0.8591
No log 8.0 272 0.5488 0.0 0.0 0.0 0.8529
No log 9.0 306 0.6051 0.0 0.0 0.0 0.8529
No log 10.0 340 0.6026 0.0 0.0 0.0 0.8605
No log 11.0 374 0.6523 0.0 0.0 0.0 0.8506
No log 12.0 408 0.6824 0.0 0.0 0.0 0.8520
No log 13.0 442 0.6777 0.0 0.0 0.0 0.8550
No log 14.0 476 0.7056 0.0 0.0 0.0 0.8508
0.2478 15.0 510 0.6940 0.0 0.0 0.0 0.8550

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
24
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Lolimorimorf/damage_trigger_effect_2023-12-19_14_11

Finetuned
(4)
this model