V0503HMA8H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.087 | 0.09 | 10 | 0.8324 |
0.3066 | 0.18 | 20 | 0.1310 |
0.1248 | 0.27 | 30 | 0.0950 |
0.1045 | 0.36 | 40 | 0.0865 |
0.0863 | 0.45 | 50 | 0.0773 |
0.0894 | 0.54 | 60 | 0.0753 |
0.0816 | 0.63 | 70 | 0.0769 |
0.078 | 0.73 | 80 | 0.0791 |
0.0823 | 0.82 | 90 | 0.0738 |
0.0842 | 0.91 | 100 | 0.0712 |
0.0793 | 1.0 | 110 | 0.0692 |
0.0743 | 1.09 | 120 | 0.0785 |
0.0761 | 1.18 | 130 | 0.0867 |
0.0818 | 1.27 | 140 | 0.0762 |
0.0726 | 1.36 | 150 | 0.0762 |
0.0874 | 1.45 | 160 | 0.0818 |
0.0809 | 1.54 | 170 | 0.0738 |
0.0806 | 1.63 | 180 | 0.0707 |
0.0645 | 1.72 | 190 | 0.0593 |
0.0686 | 1.81 | 200 | 0.0666 |
0.0586 | 1.9 | 210 | 0.0589 |
0.0501 | 1.99 | 220 | 0.0503 |
0.0321 | 2.08 | 230 | 0.0512 |
0.0291 | 2.18 | 240 | 0.0484 |
0.0249 | 2.27 | 250 | 0.0517 |
0.0279 | 2.36 | 260 | 0.0493 |
0.0253 | 2.45 | 270 | 0.0444 |
0.024 | 2.54 | 280 | 0.0462 |
0.0218 | 2.63 | 290 | 0.0471 |
0.0207 | 2.72 | 300 | 0.0459 |
0.0286 | 2.81 | 310 | 0.0453 |
0.0225 | 2.9 | 320 | 0.0451 |
0.0209 | 2.99 | 330 | 0.0451 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA8H
Base model
microsoft/phi-2