V0503HMA11H
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0055 | 0.09 | 10 | 0.3961 |
0.186 | 0.18 | 20 | 0.1141 |
0.1118 | 0.27 | 30 | 0.0977 |
0.1089 | 0.36 | 40 | 0.0952 |
0.0886 | 0.45 | 50 | 0.0830 |
0.0885 | 0.54 | 60 | 0.0771 |
0.0779 | 0.63 | 70 | 0.0766 |
0.0769 | 0.73 | 80 | 0.0755 |
0.081 | 0.82 | 90 | 0.0841 |
1.9267 | 0.91 | 100 | 2.8978 |
1.325 | 1.0 | 110 | 0.4477 |
0.2463 | 1.09 | 120 | 0.2508 |
0.1858 | 1.18 | 130 | 0.1711 |
0.296 | 1.27 | 140 | 0.1746 |
0.1923 | 1.36 | 150 | 0.1557 |
0.2013 | 1.45 | 160 | 0.1712 |
0.1653 | 1.54 | 170 | 0.1567 |
0.1593 | 1.63 | 180 | 0.1648 |
0.154 | 1.72 | 190 | 0.1493 |
0.1494 | 1.81 | 200 | 0.1584 |
0.1547 | 1.9 | 210 | 0.1494 |
0.1528 | 1.99 | 220 | 0.1507 |
0.1565 | 2.08 | 230 | 0.1547 |
0.1503 | 2.18 | 240 | 0.1495 |
0.146 | 2.27 | 250 | 0.1474 |
0.1489 | 2.36 | 260 | 0.1478 |
0.1472 | 2.45 | 270 | 0.1474 |
0.1458 | 2.54 | 280 | 0.1466 |
0.1476 | 2.63 | 290 | 0.1476 |
0.1485 | 2.72 | 300 | 0.1471 |
0.1478 | 2.81 | 310 | 0.1469 |
0.1484 | 2.9 | 320 | 0.1468 |
0.148 | 2.99 | 330 | 0.1469 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0503HMA11H
Base model
microsoft/phi-2