O0515HMA12H
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0549
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.6104 | 0.09 | 10 | 1.3240 |
0.4063 | 0.18 | 20 | 0.1559 |
0.1514 | 0.27 | 30 | 0.1626 |
0.1525 | 0.36 | 40 | 0.1576 |
0.1495 | 0.45 | 50 | 0.1505 |
0.1513 | 0.54 | 60 | 0.1508 |
0.1519 | 0.63 | 70 | 0.1517 |
0.145 | 0.73 | 80 | 0.1355 |
0.1665 | 0.82 | 90 | 0.1096 |
1.2345 | 0.91 | 100 | 1.0205 |
0.2623 | 1.0 | 110 | 0.1583 |
4.8958 | 1.09 | 120 | 3.3759 |
0.6175 | 1.18 | 130 | 0.1479 |
0.2584 | 1.27 | 140 | 0.0984 |
0.1241 | 1.36 | 150 | 0.0753 |
0.1141 | 1.45 | 160 | 0.0951 |
0.0845 | 1.54 | 170 | 0.0683 |
0.0673 | 1.63 | 180 | 0.0599 |
0.0665 | 1.72 | 190 | 0.0603 |
0.06 | 1.81 | 200 | 0.0682 |
0.0625 | 1.9 | 210 | 0.0585 |
0.0611 | 1.99 | 220 | 0.0625 |
0.0628 | 2.08 | 230 | 0.0624 |
0.0569 | 2.18 | 240 | 0.0591 |
0.0562 | 2.27 | 250 | 0.0570 |
0.0585 | 2.36 | 260 | 0.0576 |
0.0536 | 2.45 | 270 | 0.0558 |
0.052 | 2.54 | 280 | 0.0545 |
0.0544 | 2.63 | 290 | 0.0574 |
0.0561 | 2.72 | 300 | 0.0538 |
0.0554 | 2.81 | 310 | 0.0540 |
0.0569 | 2.9 | 320 | 0.0547 |
0.0594 | 2.99 | 330 | 0.0549 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0515HMA12H
Base model
allenai/OLMo-1B