|
--- |
|
license: apache-2.0 |
|
base_model: allenai/OLMo-1B |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: O0430HMA8 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# O0430HMA8 |
|
|
|
This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0097 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.8818 | 0.09 | 10 | 0.2574 | |
|
| 0.1883 | 0.18 | 20 | 0.1602 | |
|
| 0.1522 | 0.27 | 30 | 0.1648 | |
|
| 0.1591 | 0.36 | 40 | 0.1532 | |
|
| 0.1506 | 0.45 | 50 | 0.1499 | |
|
| 0.1514 | 0.54 | 60 | 0.1500 | |
|
| 0.1507 | 0.63 | 70 | 0.1473 | |
|
| 0.1508 | 0.73 | 80 | 0.1553 | |
|
| 0.1469 | 0.82 | 90 | 0.1506 | |
|
| 0.1461 | 0.91 | 100 | 0.1385 | |
|
| 0.1147 | 1.0 | 110 | 0.0797 | |
|
| 0.0984 | 1.09 | 120 | 0.0851 | |
|
| 0.202 | 1.18 | 130 | 0.0826 | |
|
| 0.0782 | 1.27 | 140 | 0.0681 | |
|
| 0.1336 | 1.36 | 150 | 0.0831 | |
|
| 0.058 | 1.45 | 160 | 0.0398 | |
|
| 0.0845 | 1.54 | 170 | 0.0853 | |
|
| 0.0583 | 1.63 | 180 | 0.0311 | |
|
| 0.0332 | 1.72 | 190 | 0.0253 | |
|
| 0.0311 | 1.81 | 200 | 0.0264 | |
|
| 0.0337 | 1.9 | 210 | 0.0251 | |
|
| 0.0212 | 1.99 | 220 | 0.0208 | |
|
| 0.0265 | 2.08 | 230 | 0.0244 | |
|
| 0.0199 | 2.18 | 240 | 0.0202 | |
|
| 0.0171 | 2.27 | 250 | 0.0174 | |
|
| 0.02 | 2.36 | 260 | 0.0163 | |
|
| 0.0174 | 2.45 | 270 | 0.0158 | |
|
| 0.0119 | 2.54 | 280 | 0.0128 | |
|
| 0.0161 | 2.63 | 290 | 0.0132 | |
|
| 0.0152 | 2.72 | 300 | 0.0103 | |
|
| 0.0139 | 2.81 | 310 | 0.0109 | |
|
| 0.0128 | 2.9 | 320 | 0.0102 | |
|
| 0.0111 | 2.99 | 330 | 0.0097 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|