O0430HMA6
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0623
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4958 | 0.09 | 10 | 0.3193 |
0.1817 | 0.18 | 20 | 0.1548 |
0.1508 | 0.27 | 30 | 0.1638 |
0.1556 | 0.36 | 40 | 0.1552 |
0.1499 | 0.45 | 50 | 0.1504 |
0.1522 | 0.54 | 60 | 0.1483 |
0.1506 | 0.63 | 70 | 0.1470 |
0.1495 | 0.73 | 80 | 0.1541 |
0.1474 | 0.82 | 90 | 0.1481 |
0.1489 | 0.91 | 100 | 0.1484 |
0.1526 | 1.0 | 110 | 0.1507 |
0.1461 | 1.09 | 120 | 0.1554 |
0.1398 | 1.18 | 130 | 2.6095 |
0.6382 | 1.27 | 140 | 0.2302 |
2.3592 | 1.36 | 150 | 5.4479 |
5.055 | 1.45 | 160 | 0.8315 |
0.5246 | 1.54 | 170 | 0.3362 |
0.2959 | 1.63 | 180 | 0.2215 |
0.1886 | 1.72 | 190 | 0.2380 |
0.1831 | 1.81 | 200 | 0.1745 |
0.1507 | 1.9 | 210 | 0.1364 |
0.1488 | 1.99 | 220 | 0.1251 |
0.1138 | 2.08 | 230 | 0.0916 |
0.0816 | 2.18 | 240 | 0.0756 |
0.0687 | 2.27 | 250 | 0.0720 |
0.0677 | 2.36 | 260 | 0.0665 |
0.0585 | 2.45 | 270 | 0.0651 |
0.0581 | 2.54 | 280 | 0.0620 |
0.0596 | 2.63 | 290 | 0.0648 |
0.0611 | 2.72 | 300 | 0.0614 |
0.0615 | 2.81 | 310 | 0.0614 |
0.0605 | 2.9 | 320 | 0.0623 |
0.0656 | 2.99 | 330 | 0.0623 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA6
Base model
allenai/OLMo-1B