O0430HMA21
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4312 | 0.09 | 10 | 0.1874 |
0.1634 | 0.18 | 20 | 0.1497 |
0.1488 | 0.27 | 30 | 0.1613 |
0.1545 | 0.36 | 40 | 0.1540 |
0.1508 | 0.45 | 50 | 0.1523 |
0.1531 | 0.54 | 60 | 0.1514 |
0.1533 | 0.63 | 70 | 0.1467 |
0.1508 | 0.73 | 80 | 0.1608 |
0.1482 | 0.82 | 90 | 0.1485 |
0.1462 | 0.91 | 100 | 0.1425 |
0.1171 | 1.0 | 110 | 0.9807 |
0.9406 | 1.09 | 120 | 0.1657 |
0.3022 | 1.18 | 130 | 0.2118 |
0.173 | 1.27 | 140 | 0.2822 |
0.1207 | 1.36 | 150 | 0.0716 |
0.067 | 1.45 | 160 | 0.0495 |
0.0569 | 1.54 | 170 | 0.0470 |
0.0515 | 1.63 | 180 | 0.0446 |
0.0397 | 1.72 | 190 | 0.0745 |
0.0345 | 1.81 | 200 | 0.0217 |
0.0199 | 1.9 | 210 | 0.0118 |
0.0097 | 1.99 | 220 | 0.0128 |
0.025 | 2.08 | 230 | 0.0168 |
0.0139 | 2.18 | 240 | 0.0121 |
0.0108 | 2.27 | 250 | 0.0133 |
0.0148 | 2.36 | 260 | 0.0100 |
0.0105 | 2.45 | 270 | 0.0065 |
0.0058 | 2.54 | 280 | 0.0065 |
0.0147 | 2.63 | 290 | 0.0061 |
0.0068 | 2.72 | 300 | 0.0061 |
0.0079 | 2.81 | 310 | 0.0058 |
0.0105 | 2.9 | 320 | 0.0059 |
0.0067 | 2.99 | 330 | 0.0059 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA21
Base model
allenai/OLMo-1B