AOLM2
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1428
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9303 | 0.09 | 10 | 0.9652 |
0.3692 | 0.18 | 20 | 0.1604 |
0.1539 | 0.27 | 30 | 0.1626 |
0.1561 | 0.36 | 40 | 0.1535 |
0.1518 | 0.45 | 50 | 0.1511 |
0.1518 | 0.54 | 60 | 0.1483 |
0.1488 | 0.63 | 70 | 0.1485 |
0.1486 | 0.73 | 80 | 0.1528 |
0.1467 | 0.82 | 90 | 0.1504 |
0.1476 | 0.91 | 100 | 0.1485 |
0.149 | 1.0 | 110 | 0.1477 |
0.1456 | 1.09 | 120 | 0.1490 |
0.1442 | 1.18 | 130 | 0.1499 |
0.1474 | 1.27 | 140 | 0.1479 |
0.1482 | 1.36 | 150 | 0.1486 |
0.1455 | 1.45 | 160 | 0.1483 |
0.1455 | 1.54 | 170 | 0.1467 |
0.1467 | 1.63 | 180 | 0.1455 |
0.1464 | 1.72 | 190 | 0.1485 |
0.145 | 1.81 | 200 | 0.1468 |
0.1485 | 1.9 | 210 | 0.1458 |
0.1453 | 1.99 | 220 | 0.1477 |
0.1432 | 2.08 | 230 | 0.1457 |
0.1376 | 2.18 | 240 | 0.1447 |
0.1392 | 2.27 | 250 | 0.1446 |
0.1385 | 2.36 | 260 | 0.1443 |
0.137 | 2.45 | 270 | 0.1444 |
0.1352 | 2.54 | 280 | 0.1436 |
0.1338 | 2.63 | 290 | 0.1435 |
0.1352 | 2.72 | 300 | 0.1430 |
0.1351 | 2.81 | 310 | 0.1428 |
0.1317 | 2.9 | 320 | 0.1430 |
0.1361 | 2.99 | 330 | 0.1428 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/AOLM2
Base model
allenai/OLMo-1B