andrijdavid commited on
Commit
c0c7665
·
verified ·
1 Parent(s): 54323cf

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +422 -0
README.md ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ---
4
+ license: bigcode-openrail-m
5
+ library_name: transformers
6
+ tags:
7
+ - code
8
+ - GGUF
9
+ base_model: bigcode/starcoder2-15b
10
+ datasets:
11
+ - bigcode/self-oss-instruct-sc2-exec-filter-50k
12
+ pipeline_tag: text-generation
13
+ model-index:
14
+ - name: starcoder2-15b-instruct-v0.1
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: LiveCodeBench (code generation)
20
+ type: livecodebench-codegeneration
21
+ metrics:
22
+ - type: pass@1
23
+ value: 20.4
24
+ verified: false
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: LiveCodeBench (self repair)
29
+ type: livecodebench-selfrepair
30
+ metrics:
31
+ - type: pass@1
32
+ value: 20.9
33
+ verified: false
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: LiveCodeBench (test output prediction)
38
+ type: livecodebench-testoutputprediction
39
+ metrics:
40
+ - type: pass@1
41
+ value: 29.8
42
+ verified: false
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: LiveCodeBench (code execution)
47
+ type: livecodebench-codeexecution
48
+ metrics:
49
+ - type: pass@1
50
+ value: 28.1
51
+ verified: false
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: HumanEval
56
+ type: humaneval
57
+ metrics:
58
+ - type: pass@1
59
+ value: 72.6
60
+ verified: false
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: HumanEval+
65
+ type: humanevalplus
66
+ metrics:
67
+ - type: pass@1
68
+ value: 63.4
69
+ verified: false
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: MBPP
74
+ type: mbpp
75
+ metrics:
76
+ - type: pass@1
77
+ value: 75.2
78
+ verified: false
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: MBPP+
83
+ type: mbppplus
84
+ metrics:
85
+ - type: pass@1
86
+ value: 61.2
87
+ verified: false
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: DS-1000
92
+ type: ds-1000
93
+ metrics:
94
+ - type: pass@1
95
+ value: 40.6
96
+ verified: false
97
+ quantized_by: andrijdavid
98
+ ---
99
+ # starcoder2-15b-instruct-v0.1-GGUF
100
+ - Original model: [starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
101
+
102
+ <!-- description start -->
103
+ ## Description
104
+
105
+ This repo contains GGUF format model files for [starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1).
106
+
107
+ <!-- description end -->
108
+ <!-- README_GGUF.md-about-gguf start -->
109
+ ### About GGUF
110
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
111
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
112
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option.
113
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration.
114
+ * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​
115
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling.
116
+ * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration.
117
+ * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration.
118
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection.
119
+ * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration.
120
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server.
121
+ * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use.
122
+ * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server.
123
+ * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents.
124
+ <!-- README_GGUF.md-about-gguf end -->
125
+
126
+ <!-- compatibility_gguf start -->
127
+ ## Explanation of quantisation methods
128
+ <details>
129
+ <summary>Click to see details</summary>
130
+ The new methods available are:
131
+
132
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
133
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
134
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
135
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
136
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw.
137
+ </details>
138
+ <!-- compatibility_gguf end -->
139
+
140
+ <!-- README_GGUF.md-how-to-download start -->
141
+ ## How to download GGUF files
142
+
143
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder.
144
+
145
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
146
+
147
+ * LM Studio
148
+ * LoLLMS Web UI
149
+ * Faraday.dev
150
+
151
+ ### In `text-generation-webui`
152
+
153
+ Under Download Model, you can enter the model repo: LiteLLMs/starcoder2-15b-instruct-v0.1-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf.
154
+
155
+ Then click Download.
156
+
157
+ ### On the command line, including multiple files at once
158
+
159
+ I recommend using the `huggingface-hub` Python library:
160
+
161
+ ```shell
162
+ pip3 install huggingface-hub
163
+ ```
164
+
165
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
166
+
167
+ ```shell
168
+ huggingface-cli download LiteLLMs/starcoder2-15b-instruct-v0.1-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
169
+ ```
170
+
171
+ <details>
172
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
173
+
174
+ You can also download multiple files at once with a pattern:
175
+
176
+ ```shell
177
+ huggingface-cli download LiteLLMs/starcoder2-15b-instruct-v0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
178
+ ```
179
+
180
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
181
+
182
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
183
+
184
+ ```shell
185
+ pip3 install huggingface_hub[hf_transfer]
186
+ ```
187
+
188
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
189
+
190
+ ```shell
191
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/starcoder2-15b-instruct-v0.1-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False
192
+ ```
193
+
194
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
195
+ </details>
196
+ <!-- README_GGUF.md-how-to-download end -->
197
+ <!-- README_GGUF.md-how-to-run start -->
198
+ ## Example `llama.cpp` command
199
+
200
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
201
+
202
+ ```shell
203
+ ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>"
204
+ ```
205
+
206
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
207
+
208
+ Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
209
+
210
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
211
+
212
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
213
+
214
+ ## How to run in `text-generation-webui`
215
+
216
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
217
+
218
+ ## How to run from Python code
219
+
220
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
221
+
222
+ ### How to load this model in Python code, using llama-cpp-python
223
+
224
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
225
+
226
+ #### First install the package
227
+
228
+ Run one of the following commands, according to your system:
229
+
230
+ ```shell
231
+ # Base ctransformers with no GPU acceleration
232
+ pip install llama-cpp-python
233
+ # With NVidia CUDA acceleration
234
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
235
+ # Or with OpenBLAS acceleration
236
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
237
+ # Or with CLBLast acceleration
238
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
239
+ # Or with AMD ROCm GPU acceleration (Linux only)
240
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
241
+ # Or with Metal GPU acceleration for macOS systems only
242
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
243
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
244
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
245
+ pip install llama-cpp-python
246
+ ```
247
+
248
+ #### Simple llama-cpp-python example code
249
+
250
+ ```python
251
+ from llama_cpp import Llama
252
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
253
+ llm = Llama(
254
+ model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first
255
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
256
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
257
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
258
+ )
259
+ # Simple inference example
260
+ output = llm(
261
+ "<PROMPT>", # Prompt
262
+ max_tokens=512, # Generate up to 512 tokens
263
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
264
+ echo=True # Whether to echo the prompt
265
+ )
266
+ # Chat Completion API
267
+ llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
268
+ llm.create_chat_completion(
269
+ messages = [
270
+ {"role": "system", "content": "You are a story writing assistant."},
271
+ {
272
+ "role": "user",
273
+ "content": "Write a story about llamas."
274
+ }
275
+ ]
276
+ )
277
+ ```
278
+
279
+ ## How to use with LangChain
280
+
281
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
282
+
283
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
284
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
285
+
286
+ <!-- README_GGUF.md-how-to-run end -->
287
+
288
+ <!-- footer end -->
289
+
290
+ <!-- original-model-card start -->
291
+ # Original model card: starcoder2-15b-instruct-v0.1
292
+
293
+
294
+ # StarCoder2-Instruct: Fully Transparent and Permissive Self-Alignment for Code Generation
295
+
296
+ ![Banner](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/banner.png)
297
+
298
+ ## Model Summary
299
+
300
+ We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs.
301
+
302
+ - **Model:** [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
303
+ - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
304
+ - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)
305
+ - **Authors:**
306
+ [Yuxiang Wei](https://yuxiang.cs.illinois.edu),
307
+ [Federico Cassano](https://federico.codes/),
308
+ [Jiawei Liu](https://jw-liu.xyz),
309
+ [Yifeng Ding](https://yifeng-ding.com),
310
+ [Naman Jain](https://naman-ntc.github.io),
311
+ [Harm de Vries](https://www.harmdevries.com),
312
+ [Leandro von Werra](https://twitter.com/lvwerra),
313
+ [Arjun Guha](https://www.khoury.northeastern.edu/home/arjunguha/main/home/),
314
+ [Lingming Zhang](https://lingming.cs.illinois.edu).
315
+
316
+ ![self-alignment pipeline](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/method.png)
317
+
318
+ ## Use
319
+
320
+ ### Intended use
321
+
322
+ The model is designed to respond to **coding-related instructions in a single turn**. Instructions in other styles may result in less accurate responses.
323
+
324
+ Here is an example to get started with the model using the [transformers](https://huggingface.co/docs/transformers/index) library:
325
+
326
+ ```python
327
+ import transformers
328
+ import torch
329
+
330
+ pipeline = transformers.pipeline(
331
+ model="bigcode/starcoder2-15b-instruct-v0.1",
332
+ task="text-generation",
333
+ torch_dtype=torch.bfloat16,
334
+ device_map="auto",
335
+ )
336
+
337
+ def respond(instruction: str, response_prefix: str) -> str:
338
+ messages = [{"role": "user", "content": instruction}]
339
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False)
340
+ prompt += response_prefix
341
+
342
+ teminators = [
343
+ pipeline.tokenizer.eos_token_id,
344
+ pipeline.tokenizer.convert_tokens_to_ids("###"),
345
+ ]
346
+
347
+ result = pipeline(
348
+ prompt,
349
+ max_length=256,
350
+ num_return_sequences=1,
351
+ do_sample=False,
352
+ eos_token_id=teminators,
353
+ pad_token_id=pipeline.tokenizer.eos_token_id,
354
+ truncation=True,
355
+ )
356
+ response = response_prefix + result[0]["generated_text"][len(prompt) :].split("###")[0].rstrip()
357
+ return response
358
+
359
+
360
+ instruction = "Write a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria."
361
+ response_prefix = ""
362
+
363
+ print(respond(instruction, response_prefix))
364
+ ```
365
+
366
+ Here is the expected output:
367
+
368
+ ``````
369
+ Here's how you can implement a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria:
370
+
371
+ ```python
372
+ from typing import TypeVar, Callable
373
+
374
+ T = TypeVar('T')
375
+
376
+ def quicksort(items: list[T], less_than: Callable[[T, T], bool] = lambda x, y: x < y) -> list[T]:
377
+ if len(items) <= 1:
378
+ return items
379
+
380
+ pivot = items[0]
381
+ less = [x for x in items[1:] if less_than(x, pivot)]
382
+ greater = [x for x in items[1:] if not less_than(x, pivot)]
383
+ return quicksort(less, less_than) + [pivot] + quicksort(greater, less_than)
384
+ ```
385
+ ``````
386
+
387
+ ### Bias, Risks, and Limitations
388
+
389
+ StarCoder2-15B-Instruct-v0.1 is primarily finetuned for Python code generation tasks that can be verified through execution, which may lead to certain biases and limitations. For example, the model might not adhere strictly to instructions that dictate the output format. In these situations, it's beneficial to provide a **response prefix** or a **one-shot example** to steer the model’s output. Additionally, the model may have limitations with other programming languages and out-of-domain coding tasks.
390
+
391
+ The model also inherits the bias, risks, and limitations from its base StarCoder2-15B model. For more information, please refer to the [StarCoder2-15B model card](https://huggingface.co/bigcode/starcoder2-15b).
392
+
393
+ ## Evaluation on EvalPlus, LiveCodeBench, and DS-1000
394
+
395
+ ![EvalPlus](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/evalplus.png)
396
+
397
+ ![LiveCodeBench and DS-1000](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/lcb-ds1000.png)
398
+
399
+ ## Training Details
400
+
401
+ ### Hyperparameters
402
+
403
+ - **Optimizer:** Adafactor
404
+ - **Learning rate:** 1e-5
405
+ - **Epoch:** 4
406
+ - **Batch size:** 64
407
+ - **Warmup ratio:** 0.05
408
+ - **Scheduler:** Linear
409
+ - **Sequence length:** 1280
410
+ - **Dropout**: Not applied
411
+
412
+ ### Hardware
413
+
414
+ 1 x NVIDIA A100 80GB
415
+
416
+ ## Resources
417
+
418
+ - **Model:** [bigcode/starCoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
419
+ - **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
420
+ - **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)
421
+
422
+ <!-- original-model-card end -->