🦪⚪ PEARL-small
Learning High-Quality and General-Purpose Phrase Representations.
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek.
Accepted by EACL Findings 2024
PEARL-small is a lightweight string embedding model. It is the tool of choice for semantic similarity computation for strings,
creating excellent embeddings for string matching, entity retrieval, entity clustering, fuzzy join...
It differs from typical sentence embedders because it incorporates phrase type information and morphological features,
allowing it to better capture variations in strings.
The model is a variant of E5-small finetuned on our constructed context-free dataset to yield better representations
for phrases and strings.
🤗 PEARL-small 🤗 PEARL-base
📐 PEARL Benchmark 🏆 PEARL Leaderboard
Model | Size | Avg | PPDB | PPDB filtered | Turney | BIRD | YAGO | UMLS | CoNLL | BC5CDR | AutoFJ |
---|---|---|---|---|---|---|---|---|---|---|---|
FastText | - | 40.3 | 94.4 | 61.2 | 59.6 | 58.9 | 16.9 | 14.5 | 3.0 | 0.2 | 53.6 |
Sentence-BERT | 110M | 50.1 | 94.6 | 66.8 | 50.4 | 62.6 | 21.6 | 23.6 | 25.5 | 48.4 | 57.2 |
Phrase-BERT | 110M | 54.5 | 96.8 | 68.7 | 57.2 | 68.8 | 23.7 | 26.1 | 35.4 | 59.5 | 66.9 |
E5-small | 34M | 57.0 | 96.0 | 56.8 | 55.9 | 63.1 | 43.3 | 42.0 | 27.6 | 53.7 | 74.8 |
E5-base | 110M | 61.1 | 95.4 | 65.6 | 59.4 | 66.3 | 47.3 | 44.0 | 32.0 | 69.3 | 76.1 |
PEARL-small | 34M | 62.5 | 97.0 | 70.2 | 57.9 | 68.1 | 48.1 | 44.5 | 42.4 | 59.3 | 75.2 |
PEARL-base | 110M | 64.8 | 97.3 | 72.2 | 59.7 | 72.6 | 50.7 | 45.8 | 39.3 | 69.4 | 77.1 |
Cost comparison of FastText and PEARL. The estimated memory is calculated by the number of parameters (float16). The unit of inference speed is *ms/512 samples
.
The FastText model here is crawl-300d-2M-subword.bin
.
Model | Avg Score | Estimated Memory | Speed GPU | Speed CPU |
---|---|---|---|---|
FastText | 40.3 | 1200MB | - | 57ms |
PEARL-small | 62.5 | 68MB | 42ms | 446ms |
PEARL-base | 64.8 | 220MB | 89ms | 1394ms |
Usage
Sentence Transformers
PEARL is integrated with the Sentence Transformers library (Thanks for Tom Aarsen's contribution), and can be used like so:
from sentence_transformers import SentenceTransformer, util
query_texts = ["The New York Times"]
doc_texts = [ "NYTimes", "New York Post", "New York"]
input_texts = query_texts + doc_texts
model = SentenceTransformer("Lihuchen/pearl_small")
embeddings = model.encode(input_texts)
scores = util.cos_sim(embeddings[0], embeddings[1:]) * 100
print(scores.tolist())
# [[90.56318664550781, 79.65763854980469, 75.52056121826172]]
Transformers
You can also use transformers
to use PEARL. Below is an example of entity retrieval, and we reuse the code from E5.
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def encode_text(model, input_texts):
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
return embeddings
query_texts = ["The New York Times"]
doc_texts = [ "NYTimes", "New York Post", "New York"]
input_texts = query_texts + doc_texts
tokenizer = AutoTokenizer.from_pretrained('Lihuchen/pearl_small')
model = AutoModel.from_pretrained('Lihuchen/pearl_small')
# encode
embeddings = encode_text(model, input_texts)
# calculate similarity
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# expected outputs
# [[90.56318664550781, 79.65763854980469, 75.52054595947266]]
Training and Evaluation
Have a look at our code on Github
Citation
If you find our work useful, please give us a citation:
@article{chen2024learning,
title={Learning High-Quality and General-Purpose Phrase Representations},
author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
journal={arXiv preprint arXiv:2401.10407},
year={2024}
}
- Downloads last month
- 550