There are two types of Cross-Encoder models. One is the Cross-Encoder Regression model that we fine-tuned and mentioned in the previous section. Next, we have the Cross-Encoder Classification model. These two models are introduced in the same paper https://doi.org/10.48550/arxiv.1908.10084

Both models resolve the issue that the BERT model is too time-consuming and resource-consuming to train in pairwised sentences. These two model weights are initialized as the BERT and RoBERTa networks. We only need to fine-tune them, spending much less time to yield a comparable or even better sentence embedding. The below figure \ref{figure:5} shows the architecture of Cross-Encoder Classification.

Then we evaluated the model performance on the 2,000 held-out test set. We also got a test accuracy 46.05% that is almost identical to the best validation accuracy, suggesting a good generalization model.

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.