SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-negations")
# Run inference
sentences = [
'He published a history of Cornwall, New York in 1873.',
'He failed to publish a history of Cornwall, New York in 1873.',
"Salafis assert that reliance on taqlid has led to Islam 's decline.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 77,376 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 6 tokens
- mean: 16.2 tokens
- max: 57 tokens
- min: 5 tokens
- mean: 16.32 tokens
- max: 56 tokens
- 0: ~53.20%
- 1: ~46.80%
- Samples:
sentence_0 sentence_1 label The situation in Yemen was already much better than it was in Bahrain.
The situation in Yemen was not much better than Bahrain.
0
She was a member of the Gamma Theta Upsilon honour society of geography.
She was denied membership of the Gamma Theta Upsilon honour society of mathematics.
0
Which aren't small and not worth the price.
Which are small and not worth the price.
0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1034 | 500 | 0.3382 |
0.2068 | 1000 | 0.2112 |
0.3102 | 1500 | 0.1649 |
0.4136 | 2000 | 0.1454 |
0.5170 | 2500 | 0.1244 |
0.6203 | 3000 | 0.1081 |
0.7237 | 3500 | 0.0962 |
0.8271 | 4000 | 0.0924 |
0.9305 | 4500 | 0.0852 |
1.0339 | 5000 | 0.0812 |
1.1373 | 5500 | 0.0833 |
1.2407 | 6000 | 0.0736 |
1.3441 | 6500 | 0.0756 |
1.4475 | 7000 | 0.0665 |
1.5509 | 7500 | 0.0661 |
1.6543 | 8000 | 0.0625 |
1.7577 | 8500 | 0.0621 |
1.8610 | 9000 | 0.0593 |
1.9644 | 9500 | 0.054 |
2.0678 | 10000 | 0.0569 |
2.1712 | 10500 | 0.0566 |
2.2746 | 11000 | 0.0502 |
2.3780 | 11500 | 0.0516 |
2.4814 | 12000 | 0.0455 |
2.5848 | 12500 | 0.0454 |
2.6882 | 13000 | 0.0424 |
2.7916 | 13500 | 0.044 |
2.8950 | 14000 | 0.0376 |
2.9983 | 14500 | 0.0386 |
3.1017 | 15000 | 0.0392 |
3.2051 | 15500 | 0.0344 |
3.3085 | 16000 | 0.0348 |
3.4119 | 16500 | 0.0343 |
3.5153 | 17000 | 0.0322 |
3.6187 | 17500 | 0.0324 |
3.7221 | 18000 | 0.0278 |
3.8255 | 18500 | 0.0294 |
3.9289 | 19000 | 0.0292 |
4.0323 | 19500 | 0.0276 |
4.1356 | 20000 | 0.0285 |
4.2390 | 20500 | 0.026 |
4.3424 | 21000 | 0.0271 |
4.4458 | 21500 | 0.0248 |
4.5492 | 22000 | 0.0245 |
4.6526 | 22500 | 0.0253 |
4.7560 | 23000 | 0.022 |
4.8594 | 23500 | 0.0219 |
4.9628 | 24000 | 0.0207 |
5.0662 | 24500 | 0.0212 |
5.1696 | 25000 | 0.0218 |
5.2730 | 25500 | 0.0192 |
5.3763 | 26000 | 0.0198 |
5.4797 | 26500 | 0.0183 |
5.5831 | 27000 | 0.02 |
5.6865 | 27500 | 0.0176 |
5.7899 | 28000 | 0.0184 |
5.8933 | 28500 | 0.0157 |
5.9967 | 29000 | 0.0175 |
6.1001 | 29500 | 0.0175 |
6.2035 | 30000 | 0.0163 |
6.3069 | 30500 | 0.0173 |
6.4103 | 31000 | 0.0165 |
6.5136 | 31500 | 0.0152 |
6.6170 | 32000 | 0.0155 |
6.7204 | 32500 | 0.0132 |
6.8238 | 33000 | 0.0147 |
6.9272 | 33500 | 0.0145 |
7.0306 | 34000 | 0.014 |
7.1340 | 34500 | 0.0147 |
7.2374 | 35000 | 0.0126 |
7.3408 | 35500 | 0.0141 |
7.4442 | 36000 | 0.0127 |
7.5476 | 36500 | 0.0132 |
7.6510 | 37000 | 0.0125 |
7.7543 | 37500 | 0.0111 |
7.8577 | 38000 | 0.011 |
7.9611 | 38500 | 0.0125 |
8.0645 | 39000 | 0.0128 |
8.1679 | 39500 | 0.013 |
8.2713 | 40000 | 0.0115 |
8.3747 | 40500 | 0.0111 |
8.4781 | 41000 | 0.0108 |
8.5815 | 41500 | 0.012 |
8.6849 | 42000 | 0.0108 |
8.7883 | 42500 | 0.0105 |
8.8916 | 43000 | 0.0092 |
8.9950 | 43500 | 0.0115 |
9.0984 | 44000 | 0.0112 |
9.2018 | 44500 | 0.0096 |
9.3052 | 45000 | 0.0106 |
9.4086 | 45500 | 0.011 |
9.5120 | 46000 | 0.01 |
9.6154 | 46500 | 0.011 |
9.7188 | 47000 | 0.0097 |
9.8222 | 47500 | 0.0096 |
9.9256 | 48000 | 0.0102 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.3.0+cpu
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 29
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for LeoChiuu/all-MiniLM-L6-v2-negations
Base model
sentence-transformers/all-MiniLM-L6-v2