Trying out some LISA training. This one used the same learning rate as the LORA training and only 4 layers each 10 steps. Honestly these numbers are probably noise, with how close they are.

Model AGIEval GPT4All TruthfulQA Bigbench Average
CosmoAlpacaLisa-0.2-1b 23.81 51.75 39.31 29.04 35.98
Model AGIEval GPT4All TruthfulQA Bigbench Average
CosmoAlpacaLisa-1b 23.89 51.93 39.93 28.68 36.11
Model AGIEval GPT4All TruthfulQA Bigbench Average
CosmoAlpacaLight-1b 24.28 51.31 40.33 29.47 36.35
Model AGIEval GPT4All TruthfulQA Bigbench Average
cosmo-1b 22.97 52.01 38.02 28.73 35.43

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: vicgalle/alpaca-gpt4
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lisa-out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

lisa_n_layers: 4
lisa_step_interval: 10
lisa_layers_attribute: model.layers

wandb_project: CosmoAlpacaLisa-1b-v0.2
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

lisa-out

This model is a fine-tuned version of HuggingFaceTB/cosmo-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.2281 0.0 1 1.2636
1.0795 0.25 166 1.0653
1.018 0.5 332 1.0559
1.0363 0.75 498 1.0525

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Lambent/CosmoAlpacaLisa-0.2-1b

Finetuned
(13)
this model
Merges
1 model
Quantizations
1 model