ms_detr_finetuned_diana

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3617
  • Map: 0.6874
  • Map 50: 0.789
  • Map 75: 0.7871
  • Map Small: -1.0
  • Map Medium: 0.7147
  • Map Large: 0.6892
  • Mar 1: 0.0969
  • Mar 10: 0.7163
  • Mar 100: 0.7819
  • Mar Small: -1.0
  • Mar Medium: 0.75
  • Mar Large: 0.7947
  • Map Per Class: -1.0
  • Mar 100 Per Class: -1.0
  • Classes: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class Classes
2.892 1.0 10 2.2713 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.717 2.0 20 1.6999 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.5162 3.0 30 1.4320 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.3622 4.0 40 1.2202 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.1926 5.0 50 1.1617 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.2362 6.0 60 1.1772 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.3114 7.0 70 1.0437 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.1188 8.0 80 0.9656 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.9169 9.0 90 0.8787 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.7998 10.0 100 0.7928 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.7385 11.0 110 0.6800 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.6697 12.0 120 0.6025 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.4984 13.0 130 0.5722 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
0.5245 14.0 140 0.5460 0.0079 0.0099 0.0099 -1.0 0.0238 0.0 0.005 0.005 0.005 -1.0 0.0174 0.0 -1.0 -1.0 0
0.3993 15.0 150 0.5030 0.0168 0.0198 0.0198 -1.0 0.0267 0.0079 0.0106 0.0106 0.0106 -1.0 0.0196 0.007 -1.0 -1.0 0
0.4789 16.0 160 0.4662 0.2283 0.2665 0.2665 -1.0 0.1539 0.2598 0.0794 0.2438 0.2438 -1.0 0.1543 0.2798 -1.0 -1.0 0
0.5485 17.0 170 0.4586 0.2041 0.2369 0.2369 -1.0 0.1679 0.2202 0.0731 0.2175 0.2175 -1.0 0.1717 0.236 -1.0 -1.0 0
0.3419 18.0 180 0.4637 0.3674 0.4292 0.4292 -1.0 0.2666 0.4049 0.0856 0.3994 0.3994 -1.0 0.2696 0.4518 -1.0 -1.0 0
0.4885 19.0 190 0.5509 0.4468 0.5407 0.5314 -1.0 0.354 0.4898 0.0925 0.5156 0.5156 -1.0 0.3761 0.5719 -1.0 -1.0 0
0.3336 20.0 200 0.5122 0.1809 0.2149 0.2149 -1.0 0.0802 0.2257 0.0763 0.195 0.195 -1.0 0.0783 0.2421 -1.0 -1.0 0
0.3471 21.0 210 0.4619 0.4291 0.519 0.519 -1.0 0.3115 0.4787 0.0906 0.465 0.4706 -1.0 0.3174 0.5325 -1.0 -1.0 0
0.3953 22.0 220 0.4313 0.4938 0.5927 0.581 -1.0 0.3728 0.5476 0.0887 0.5319 0.5437 -1.0 0.3891 0.6061 -1.0 -1.0 0
0.5373 23.0 230 0.4308 0.5264 0.6339 0.623 -1.0 0.4223 0.5733 0.0938 0.5744 0.5894 -1.0 0.4391 0.65 -1.0 -1.0 0
0.3092 24.0 240 0.4193 0.5561 0.6661 0.6571 -1.0 0.4775 0.5927 0.0944 0.5844 0.6169 -1.0 0.5022 0.6632 -1.0 -1.0 0
0.477 25.0 250 0.4125 0.41 0.4769 0.4769 -1.0 0.3283 0.4467 0.1006 0.4387 0.4487 -1.0 0.3348 0.4947 -1.0 -1.0 0
0.3867 26.0 260 0.4114 0.6146 0.743 0.7168 -1.0 0.6036 0.6294 0.0938 0.6381 0.6981 -1.0 0.6304 0.7254 -1.0 -1.0 0
0.3658 27.0 270 0.4001 0.6643 0.7856 0.7727 -1.0 0.6505 0.6817 0.1 0.6787 0.7456 -1.0 0.6935 0.7667 -1.0 -1.0 0
0.3053 28.0 280 0.4282 0.5218 0.6326 0.6201 -1.0 0.4163 0.5676 0.095 0.5631 0.5844 -1.0 0.4261 0.6482 -1.0 -1.0 0
0.3105 29.0 290 0.4398 0.6187 0.7567 0.7331 -1.0 0.6045 0.6336 0.0919 0.6413 0.6944 -1.0 0.6478 0.7132 -1.0 -1.0 0
0.3713 30.0 300 0.4202 0.5643 0.6683 0.6673 -1.0 0.4959 0.5996 0.0931 0.5969 0.6306 -1.0 0.5348 0.6693 -1.0 -1.0 0
0.2874 31.0 310 0.4018 0.6327 0.7547 0.7357 -1.0 0.5647 0.6713 0.0981 0.6575 0.715 -1.0 0.5957 0.7632 -1.0 -1.0 0
0.2809 32.0 320 0.4007 0.6444 0.7618 0.7412 -1.0 0.6189 0.667 0.1013 0.6694 0.7381 -1.0 0.6587 0.7702 -1.0 -1.0 0
0.2801 33.0 330 0.4528 0.6125 0.7386 0.727 -1.0 0.5399 0.6519 0.0938 0.6338 0.6994 -1.0 0.5739 0.75 -1.0 -1.0 0
0.3484 34.0 340 0.4233 0.6226 0.7505 0.7381 -1.0 0.6268 0.642 0.0988 0.64 0.7194 -1.0 0.6543 0.7456 -1.0 -1.0 0
0.3591 35.0 350 0.4156 0.6475 0.759 0.7576 -1.0 0.6733 0.6536 0.095 0.6712 0.74 -1.0 0.7065 0.7535 -1.0 -1.0 0
0.2204 36.0 360 0.4363 0.5723 0.6577 0.6577 -1.0 0.548 0.5962 0.0956 0.6112 0.6456 -1.0 0.5717 0.6754 -1.0 -1.0 0
0.3912 37.0 370 0.4261 0.6855 0.8128 0.8032 -1.0 0.6777 0.7012 0.1006 0.7063 0.7806 -1.0 0.7217 0.8044 -1.0 -1.0 0
0.3377 38.0 380 0.4260 0.6743 0.7969 0.7847 -1.0 0.6147 0.7086 0.1025 0.69 0.7444 -1.0 0.6413 0.786 -1.0 -1.0 0
0.3047 39.0 390 0.4211 0.6519 0.7793 0.7647 -1.0 0.6241 0.6742 0.1006 0.6681 0.7175 -1.0 0.6457 0.7465 -1.0 -1.0 0
0.2563 40.0 400 0.4313 0.6441 0.769 0.769 -1.0 0.724 0.6211 0.1006 0.6669 0.7275 -1.0 0.7543 0.7167 -1.0 -1.0 0
0.3127 41.0 410 0.4297 0.5739 0.6679 0.6593 -1.0 0.5456 0.5969 0.0975 0.5987 0.6438 -1.0 0.563 0.6763 -1.0 -1.0 0
0.2782 42.0 420 0.4133 0.6234 0.7267 0.7179 -1.0 0.6279 0.6346 0.0962 0.6394 0.7019 -1.0 0.6457 0.7246 -1.0 -1.0 0
0.2965 43.0 430 0.4304 0.5708 0.684 0.664 -1.0 0.5152 0.6021 0.0938 0.6225 0.6538 -1.0 0.5326 0.7026 -1.0 -1.0 0
0.2599 44.0 440 0.4240 0.6451 0.7575 0.7445 -1.0 0.67 0.6528 0.0975 0.6762 0.7506 -1.0 0.6978 0.7719 -1.0 -1.0 0
0.2821 45.0 450 0.4361 0.695 0.8218 0.796 -1.0 0.7193 0.6945 0.0969 0.7287 0.79 -1.0 0.7587 0.8026 -1.0 -1.0 0
0.3117 46.0 460 0.4164 0.7032 0.8334 0.8051 -1.0 0.7114 0.7094 0.1019 0.7331 0.7925 -1.0 0.7391 0.814 -1.0 -1.0 0
0.2484 47.0 470 0.4007 0.6757 0.7805 0.7805 -1.0 0.7268 0.6714 0.1037 0.7088 0.7656 -1.0 0.7543 0.7702 -1.0 -1.0 0
0.3059 48.0 480 0.4269 0.651 0.7539 0.7496 -1.0 0.599 0.6866 0.0956 0.6819 0.7294 -1.0 0.6174 0.7746 -1.0 -1.0 0
0.2492 49.0 490 0.3877 0.6452 0.7506 0.7277 -1.0 0.6343 0.6624 0.09 0.6794 0.7244 -1.0 0.6565 0.7518 -1.0 -1.0 0
0.3828 50.0 500 0.4237 0.6721 0.7953 0.7744 -1.0 0.7174 0.6672 0.0887 0.7056 0.7606 -1.0 0.75 0.7649 -1.0 -1.0 0
0.2737 51.0 510 0.3713 0.6619 0.7594 0.7453 -1.0 0.6988 0.6615 0.0925 0.6919 0.7419 -1.0 0.7283 0.7474 -1.0 -1.0 0
0.3283 52.0 520 0.3737 0.6298 0.7286 0.7254 -1.0 0.6199 0.6431 0.0894 0.6575 0.7019 -1.0 0.6478 0.7237 -1.0 -1.0 0
0.2819 53.0 530 0.4077 0.6919 0.8094 0.8004 -1.0 0.7656 0.6797 0.0894 0.7106 0.7831 -1.0 0.7978 0.7772 -1.0 -1.0 0
0.2533 54.0 540 0.4056 0.7032 0.8249 0.8045 -1.0 0.724 0.7105 0.0962 0.7381 0.7962 -1.0 0.7522 0.814 -1.0 -1.0 0
0.3408 55.0 550 0.3916 0.667 0.771 0.7591 -1.0 0.6257 0.6997 0.0969 0.6913 0.7356 -1.0 0.65 0.7702 -1.0 -1.0 0
0.2069 56.0 560 0.3931 0.7054 0.8197 0.7998 -1.0 0.7399 0.7061 0.0962 0.7188 0.785 -1.0 0.7652 0.793 -1.0 -1.0 0
0.2572 57.0 570 0.4012 0.6993 0.8117 0.7932 -1.0 0.729 0.699 0.1025 0.7275 0.7862 -1.0 0.7609 0.7965 -1.0 -1.0 0
0.1786 58.0 580 0.3830 0.7114 0.8231 0.8047 -1.0 0.7666 0.7065 0.0975 0.7325 0.8056 -1.0 0.7935 0.8105 -1.0 -1.0 0
0.2185 59.0 590 0.3609 0.705 0.8153 0.806 -1.0 0.7388 0.6997 0.0919 0.7194 0.7912 -1.0 0.7783 0.7965 -1.0 -1.0 0
0.2219 60.0 600 0.3783 0.7086 0.8241 0.8092 -1.0 0.7106 0.7192 0.0969 0.74 0.805 -1.0 0.7391 0.8316 -1.0 -1.0 0
0.3003 61.0 610 0.4098 0.7118 0.8178 0.8085 -1.0 0.7534 0.7084 0.0919 0.7394 0.8138 -1.0 0.7891 0.8237 -1.0 -1.0 0
0.3144 62.0 620 0.4339 0.6867 0.7967 0.7794 -1.0 0.7074 0.6913 0.0894 0.7294 0.7875 -1.0 0.7435 0.8053 -1.0 -1.0 0
0.2323 63.0 630 0.4086 0.6733 0.7901 0.7787 -1.0 0.692 0.6792 0.0944 0.715 0.7719 -1.0 0.7239 0.7912 -1.0 -1.0 0
0.3114 64.0 640 0.3946 0.6801 0.7905 0.7658 -1.0 0.6803 0.6931 0.0981 0.7188 0.7713 -1.0 0.7043 0.7982 -1.0 -1.0 0
0.2579 65.0 650 0.3899 0.6658 0.7882 0.7637 -1.0 0.6463 0.6861 0.0988 0.7013 0.7613 -1.0 0.6739 0.7965 -1.0 -1.0 0
0.2312 66.0 660 0.3816 0.6567 0.7604 0.7548 -1.0 0.6226 0.6793 0.0969 0.6919 0.7506 -1.0 0.6478 0.7921 -1.0 -1.0 0
0.209 67.0 670 0.3967 0.699 0.8281 0.7953 -1.0 0.7061 0.7074 0.0906 0.7394 0.7994 -1.0 0.7348 0.8254 -1.0 -1.0 0
0.3113 68.0 680 0.4126 0.6991 0.8308 0.7838 -1.0 0.7222 0.6999 0.0962 0.7337 0.7994 -1.0 0.7522 0.8184 -1.0 -1.0 0
0.2045 69.0 690 0.4276 0.703 0.8227 0.7956 -1.0 0.7344 0.7016 0.0838 0.735 0.8006 -1.0 0.7652 0.8149 -1.0 -1.0 0
0.2002 70.0 700 0.4094 0.6843 0.7886 0.7836 -1.0 0.6975 0.6908 0.0919 0.7175 0.7788 -1.0 0.7239 0.8009 -1.0 -1.0 0
0.2065 71.0 710 0.4052 0.7065 0.8196 0.8056 -1.0 0.7149 0.7146 0.0981 0.7337 0.8 -1.0 0.7457 0.8219 -1.0 -1.0 0
0.2716 72.0 720 0.4000 0.7039 0.8294 0.8059 -1.0 0.7229 0.7079 0.0956 0.7344 0.7987 -1.0 0.7522 0.8175 -1.0 -1.0 0
0.2935 73.0 730 0.3905 0.652 0.7532 0.7475 -1.0 0.6084 0.6786 0.0906 0.7038 0.7525 -1.0 0.6326 0.8009 -1.0 -1.0 0
0.2137 74.0 740 0.3959 0.627 0.7307 0.725 -1.0 0.6212 0.6476 0.0906 0.6794 0.7312 -1.0 0.6522 0.7632 -1.0 -1.0 0
0.2075 75.0 750 0.3786 0.6542 0.769 0.7535 -1.0 0.659 0.6667 0.0906 0.71 0.7619 -1.0 0.6913 0.7904 -1.0 -1.0 0
0.1713 76.0 760 0.3836 0.6695 0.7851 0.7703 -1.0 0.6683 0.6859 0.0906 0.7138 0.7781 -1.0 0.7065 0.807 -1.0 -1.0 0
0.2233 77.0 770 0.3947 0.6659 0.775 0.7694 -1.0 0.714 0.6616 0.0913 0.705 0.7763 -1.0 0.7543 0.7851 -1.0 -1.0 0
0.2398 78.0 780 0.3835 0.6854 0.7997 0.7883 -1.0 0.7067 0.6903 0.0906 0.7212 0.785 -1.0 0.7391 0.8035 -1.0 -1.0 0
0.1906 79.0 790 0.3811 0.6901 0.8028 0.7974 -1.0 0.7128 0.6948 0.0956 0.7231 0.7931 -1.0 0.7478 0.8114 -1.0 -1.0 0
0.1823 80.0 800 0.3831 0.6721 0.7821 0.7709 -1.0 0.7005 0.6764 0.0906 0.7094 0.775 -1.0 0.737 0.7904 -1.0 -1.0 0
0.2266 81.0 810 0.3831 0.6973 0.8131 0.8007 -1.0 0.6966 0.7103 0.0969 0.7319 0.7969 -1.0 0.7326 0.8228 -1.0 -1.0 0
0.1812 82.0 820 0.3809 0.6934 0.8057 0.7933 -1.0 0.6984 0.707 0.0962 0.7262 0.7919 -1.0 0.7348 0.8149 -1.0 -1.0 0
0.1811 83.0 830 0.3820 0.6836 0.7953 0.7829 -1.0 0.6797 0.7021 0.0969 0.7156 0.7819 -1.0 0.7087 0.8114 -1.0 -1.0 0
0.1677 84.0 840 0.3851 0.6809 0.7891 0.7759 -1.0 0.6854 0.6942 0.0962 0.7163 0.7763 -1.0 0.7109 0.8026 -1.0 -1.0 0
0.159 85.0 850 0.3791 0.6802 0.7889 0.7765 -1.0 0.6799 0.6954 0.0962 0.715 0.775 -1.0 0.7087 0.8018 -1.0 -1.0 0
0.1646 86.0 860 0.3712 0.6856 0.7903 0.7785 -1.0 0.6683 0.7073 0.0975 0.7212 0.7788 -1.0 0.6978 0.8114 -1.0 -1.0 0
0.1618 87.0 870 0.3736 0.6817 0.7861 0.7753 -1.0 0.7037 0.6883 0.0969 0.72 0.7781 -1.0 0.7326 0.7965 -1.0 -1.0 0
0.144 88.0 880 0.3724 0.6804 0.7917 0.7688 -1.0 0.7067 0.6832 0.0962 0.7138 0.7719 -1.0 0.7304 0.7886 -1.0 -1.0 0
0.2508 89.0 890 0.3643 0.6792 0.7823 0.7692 -1.0 0.7062 0.6828 0.0969 0.7125 0.7706 -1.0 0.7283 0.7877 -1.0 -1.0 0
0.1579 90.0 900 0.3623 0.6996 0.8094 0.7962 -1.0 0.7204 0.7044 0.0962 0.7256 0.7937 -1.0 0.7522 0.8105 -1.0 -1.0 0
0.1625 91.0 910 0.3630 0.6985 0.8083 0.7959 -1.0 0.718 0.7034 0.0962 0.7256 0.7937 -1.0 0.7522 0.8105 -1.0 -1.0 0
0.1734 92.0 920 0.3626 0.6876 0.7894 0.787 -1.0 0.7165 0.6891 0.0969 0.7169 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0
0.1452 93.0 930 0.3619 0.6838 0.7887 0.7781 -1.0 0.7163 0.684 0.0969 0.7119 0.7769 -1.0 0.7522 0.7868 -1.0 -1.0 0
0.1764 94.0 940 0.3633 0.6833 0.7888 0.7782 -1.0 0.7162 0.6831 0.0969 0.7113 0.7763 -1.0 0.7522 0.786 -1.0 -1.0 0
0.1862 95.0 950 0.3633 0.6825 0.7889 0.7781 -1.0 0.7153 0.6826 0.0969 0.71 0.7756 -1.0 0.75 0.786 -1.0 -1.0 0
0.1855 96.0 960 0.3622 0.6878 0.7891 0.7873 -1.0 0.7147 0.6899 0.0969 0.7163 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0
0.2982 97.0 970 0.3622 0.6877 0.789 0.7873 -1.0 0.7147 0.6896 0.0969 0.7163 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0
0.1764 98.0 980 0.3620 0.6877 0.789 0.7873 -1.0 0.7147 0.6896 0.0969 0.7163 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0
0.2245 99.0 990 0.3618 0.6874 0.789 0.7871 -1.0 0.7147 0.6892 0.0969 0.7163 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0
0.1775 100.0 1000 0.3617 0.6874 0.789 0.7871 -1.0 0.7147 0.6892 0.0969 0.7163 0.7819 -1.0 0.75 0.7947 -1.0 -1.0 0

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
30
Safetensors
Model size
43.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LLyq/ms_detr_finetuned_diana

Finetuned
(50)
this model