image

Update!

  • [2024.08.09] Llama3.1 버전을 κΈ°λ°˜μœΌλ‘œν•œ Bllossom-8B둜 λͺ¨λΈμ„ μ—…λ°μ΄νŠΈ ν–ˆμŠ΅λ‹ˆλ‹€. κΈ°μ‘΄ llama3기반 Bllossom 보닀 평균 5%정도 μ„±λŠ₯ ν–₯상이 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.(μˆ˜μ •μ€‘μ— μžˆμŠ΅λ‹ˆλ‹€.)
  • [2024.06.18] μ‚¬μ „ν•™μŠ΅λŸ‰μ„ 250GBκΉŒμ§€ 늘린 Bllossom ELOλͺ¨λΈλ‘œ μ—…λ°μ΄νŠΈ λ˜μ—ˆμŠ΅λ‹ˆλ‹€. λ‹€λ§Œ 단어확μž₯은 ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. κΈ°μ‘΄ 단어확μž₯된 long-context λͺ¨λΈμ„ ν™œμš©ν•˜κ³  μ‹ΆμœΌμ‹ λΆ„μ€ κ°œμΈμ—°λ½μ£Όμ„Έμš”!
  • [2024.06.18] Bllossom ELO λͺ¨λΈμ€ 자체 κ°œλ°œν•œ ELOμ‚¬μ „ν•™μŠ΅ 기반으둜 μƒˆλ‘œμš΄ ν•™μŠ΅λœ λͺ¨λΈμž…λ‹ˆλ‹€. LogicKor 벀치마크 κ²°κ³Ό ν˜„μ‘΄ν•˜λŠ” ν•œκ΅­μ–΄ 10Bμ΄ν•˜ λͺ¨λΈμ€‘ SOTA점수λ₯Ό λ°›μ•˜μŠ΅λ‹ˆλ‹€.

LogicKor μ„±λŠ₯ν‘œ :

Model Math Reasoning Writing Coding Understanding Grammar Single ALL Multi ALL Overall
gpt-3.5-turbo-0125 7.14 7.71 8.28 5.85 9.71 6.28 7.50 7.95 7.72
gemini-1.5-pro-preview-0215 8.00 7.85 8.14 7.71 8.42 7.28 7.90 6.26 7.08
llama-3-Korean-Bllossom-8B 5.43 8.29 9.0 4.43 7.57 6.86 6.93 6.93 6.93

Bllossom | Demo | Homepage | Github |

저희 BllossomνŒ€ μ—μ„œ ν•œκ΅­μ–΄-μ˜μ–΄ 이쀑 μ–Έμ–΄λͺ¨λΈμΈ Bllossom을 κ³΅κ°œν–ˆμŠ΅λ‹ˆλ‹€!
μ„œμšΈκ³ΌκΈ°λŒ€ μŠˆνΌμ»΄ν“¨νŒ… μ„Όν„°μ˜ μ§€μ›μœΌλ‘œ 100GBκ°€λ„˜λŠ” ν•œκ΅­μ–΄λ‘œ λͺ¨λΈμ „체λ₯Ό ν’€νŠœλ‹ν•œ ν•œκ΅­μ–΄ κ°•ν™” 이쀑언어 λͺ¨λΈμž…λ‹ˆλ‹€!
ν•œκ΅­μ–΄ μž˜ν•˜λŠ” λͺ¨λΈ μ°Ύκ³  μžˆμ§€ μ•ŠμœΌμ…¨λ‚˜μš”?
 - ν•œκ΅­μ–΄ 졜초! 무렀 3λ§Œκ°œκ°€ λ„˜λŠ” ν•œκ΅­μ–΄ μ–΄νœ˜ν™•μž₯
 - Llama3λŒ€λΉ„ λŒ€λž΅ 25% 더 κΈ΄ 길이의 ν•œκ΅­μ–΄ Context μ²˜λ¦¬κ°€λŠ₯
 - ν•œκ΅­μ–΄-μ˜μ–΄ Pararell Corpusλ₯Ό ν™œμš©ν•œ ν•œκ΅­μ–΄-μ˜μ–΄ 지식연결 (μ‚¬μ „ν•™μŠ΅)
 - ν•œκ΅­μ–΄ λ¬Έν™”, μ–Έμ–΄λ₯Ό κ³ λ €ν•΄ μ–Έμ–΄ν•™μžκ°€ μ œμž‘ν•œ 데이터λ₯Ό ν™œμš©ν•œ λ―Έμ„Έμ‘°μ •
 - κ°•ν™”ν•™μŠ΅
이 λͺ¨λ“ κ²Œ ν•œκΊΌλ²ˆμ— 적용되고 상업적 이용이 κ°€λŠ₯ν•œ Bllossom을 μ΄μš©ν•΄ μ—¬λŸ¬λΆ„ 만의 λͺ¨λΈμ„ λ§Œλ“€μ–΄λ³΄μ„Έμš₯!
무렀 Colab 무료 GPU둜 ν•™μŠ΅μ΄ κ°€λŠ₯ν•©λ‹ˆλ‹€. ν˜Ήμ€ μ–‘μžν™” λͺ¨λΈλ‘œ CPUμ—μ˜¬λ €λ³΄μ„Έμš” [μ–‘μžν™”λͺ¨λΈ](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B-4bit)

1. Bllossom-8BλŠ” μ„œμšΈκ³ΌκΈ°λŒ€, ν…Œλ””μΈ, μ—°μ„ΈλŒ€ μ–Έμ–΄μžμ› μ—°κ΅¬μ‹€μ˜ μ–Έμ–΄ν•™μžμ™€ ν˜‘μ—…ν•΄ λ§Œλ“  μ‹€μš©μ£Όμ˜κΈ°λ°˜ μ–Έμ–΄λͺ¨λΈμž…λ‹ˆλ‹€! μ•žμœΌλ‘œ 지속적인 μ—…λ°μ΄νŠΈλ₯Ό 톡해 κ΄€λ¦¬ν•˜κ² μŠ΅λ‹ˆλ‹€ 많이 ν™œμš©ν•΄μ£Όμ„Έμš” πŸ™‚
2. 초 κ°•λ ₯ν•œ Advanced-Bllossom 8B, 70Bλͺ¨λΈ, μ‹œκ°-μ–Έμ–΄λͺ¨λΈμ„ λ³΄μœ ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€! (κΆκΈˆν•˜μ‹ λΆ„μ€ κ°œλ³„ μ—°λ½μ£Όμ„Έμš”!!)
3. Bllossom은 NAACL2024, LREC-COLING2024 (ꡬ두) λ°œν‘œλ‘œ μ±„νƒλ˜μ—ˆμŠ΅λ‹ˆλ‹€.
4. 쒋은 μ–Έμ–΄λͺ¨λΈ 계속 μ—…λ°μ΄νŠΈ ν•˜κ² μŠ΅λ‹ˆλ‹€!! ν•œκ΅­μ–΄ κ°•ν™”λ₯Όμœ„ν•΄ 곡동 μ—°κ΅¬ν•˜μ‹€λΆ„(νŠΉνžˆλ…Όλ¬Έ) μ–Έμ œλ“  ν™˜μ˜ν•©λ‹ˆλ‹€!! 
   특히 μ†ŒλŸ‰μ˜ GPU라도 λŒ€μ—¬ κ°€λŠ₯ν•œνŒ€μ€ μ–Έμ œλ“  μ—°λ½μ£Όμ„Έμš”! λ§Œλ“€κ³  싢은거 λ„μ™€λ“œλ €μš”.

The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:

  • Knowledge Linking: Linking Korean and English knowledge through additional training
  • Vocabulary Expansion: Expansion of Korean vocabulary to enhance Korean expressiveness.
  • Instruction Tuning: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
  • Human Feedback: DPO has been applied
  • Vision-Language Alignment: Aligning the vision transformer with this language model

This model developed by MLPLab at Seoultech, Teddysum and Yonsei Univ

Demo Video

Bllossom-V Demo

Bllossom Demo(Kakao)γ…€γ…€γ…€γ…€γ…€γ…€γ…€γ…€

NEWS

  • [2024.06.18] We have reverted to the non-vocab-expansion model. However, we have significantly increased the amount of pre-training data to 250GB.
  • [2024.05.08] Vocab Expansion Model Update
  • [2024.04.25] We released Bllossom v2.0, based on llama-3

Example code

Colab Tutorial

Install Dependencies

pip install torch transformers==4.40.0 accelerate

Python code with Pipeline

import transformers
import torch

model_id = "MLP-KTLim/llama-3-Korean-Bllossom-8B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

pipeline.model.eval()

PROMPT = '''You are a helpful AI assistant. Please answer the user's questions kindly. 당신은 유λŠ₯ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈ μž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆλ¬Έμ— λŒ€ν•΄ μΉœμ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.'''
instruction = "μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄μ€„λž˜?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(outputs[0]["generated_text"][len(prompt):])
# 물둠이죠! μ„œμšΈμ€ λ‹€μ–‘ν•œ 문화와 역사, μžμ—°μ„ κ²ΈλΉ„ν•œ λ„μ‹œλ‘œ, λ§Žμ€ κ΄€κ΄‘ λͺ…μ†Œλ₯Ό μžλž‘ν•©λ‹ˆλ‹€. μ—¬κΈ° μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό μ†Œκ°œν•΄ λ“œλ¦΄κ²Œμš”.

### μ½”μŠ€ 1: 역사와 λ¬Έν™” 탐방

1. **경볡ꢁ**
   - μ„œμšΈμ˜ λŒ€ν‘œμ μΈ ꢁꢐ둜, μ‘°μ„  μ™•μ‘°μ˜ 역사와 λ¬Έν™”λ₯Ό μ²΄ν—˜ν•  수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

2. **뢁촌 ν•œμ˜₯λ§ˆμ„**
   - 전톡 ν•œμ˜₯이 잘 보쑴된 λ§ˆμ„λ‘œ, μ‘°μ„ μ‹œλŒ€μ˜ μƒν™œμƒμ„ λŠλ‚„ 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **인사동**
   - 전톡 문화와 ν˜„λŒ€ 예술이 κ³΅μ‘΄ν•˜λŠ” 거리둜, λ‹€μ–‘ν•œ κ°€λŸ¬λ¦¬μ™€ 전톡 μŒμ‹μ μ΄ μžˆμŠ΅λ‹ˆλ‹€.

4. **μ²­κ³„μ²œ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ 천문으둜, μ‘°κΉ…κ³Ό 산책을 즐길 수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

### μ½”μŠ€ 2: μžμ—°κ³Ό μ‡Όν•‘

1. **남산 μ„œμšΈνƒ€μ›Œ**
   - μ„œμšΈμ˜ 전경을 ν•œλˆˆμ— λ³Ό 수 μžˆλŠ” 곳으둜, 특히 저녁 μ‹œκ°„λŒ€μ— 일λͺ°μ„ κ°μƒν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.

2. **λͺ…동**
   - μ‡Όν•‘κ³Ό μŒμ‹μ μ΄ μ¦λΉ„ν•œ μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λΈŒλžœλ“œμ™€ 전톡 μŒμ‹μ„ 맛볼 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **ν•œκ°•κ³΅μ›**
   - μ„œμšΈμ˜ μ£Όμš” 곡원 쀑 ν•˜λ‚˜λ‘œ, μ‘°κΉ…, μžμ „κ±° 타기, λ°°λ‚­ 여행을 즐길 수 μžˆμŠ΅λ‹ˆλ‹€.

4. **ν™λŒ€**
   - μ Šμ€μ΄λ“€μ΄ 즐겨 μ°ΎλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ 카페, λ ˆμŠ€ν† λž‘, 클럽이 μžˆμŠ΅λ‹ˆλ‹€.

### μ½”μŠ€ 3: ν˜„λŒ€μ™€ μ „ν†΅μ˜ μ‘°ν™”

1. **λ™λŒ€λ¬Έ λ””μžμΈ ν”ŒλΌμž (DDP)**
   - ν˜„λŒ€μ μΈ κ±΄μΆ•λ¬Όλ‘œ, λ‹€μ–‘ν•œ μ „μ‹œμ™€ μ΄λ²€νŠΈκ°€ μ—΄λ¦¬λŠ” κ³³μž…λ‹ˆλ‹€.

2. **μ΄νƒœμ›**
   - λ‹€μ–‘ν•œ ꡭ제 μŒμ‹κ³Ό μΉ΄νŽ˜κ°€ μžˆλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λ¬Έν™”λ₯Ό κ²½ν—˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

3. **κ΄‘ν™”λ¬Έ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ κ΄‘μž₯으둜, λ‹€μ–‘ν•œ 곡연과 행사가 μ—΄λ¦½λ‹ˆλ‹€.

4. **μ„œμšΈλžœλ“œ**
   - μ„œμšΈ 외곽에 μœ„μΉ˜ν•œ ν…Œλ§ˆνŒŒν¬λ‘œ, κ°€μ‘±λ‹¨μœ„ κ΄€κ΄‘κ°λ“€μ—κ²Œ 인기 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

이 μ½”μŠ€λ“€μ€ μ„œμšΈμ˜ λ‹€μ–‘ν•œ λ©΄λͺ¨λ₯Ό κ²½ν—˜ν•  수 μžˆλ„λ‘ κ΅¬μ„±λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. 각 μ½”μŠ€λ§ˆλ‹€ μ‹œκ°„μ„ μ‘°μ ˆν•˜κ³ , 개인의 관심사에 맞게 μ„ νƒν•˜μ—¬ λ°©λ¬Έν•˜λ©΄ 쒋을 것 κ°™μŠ΅λ‹ˆλ‹€. 즐거운 μ—¬ν–‰ λ˜μ„Έμš”!

Python code with AutoModel


import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = 'MLP-KTLim/llama-3-Korean-Bllossom-8B'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

model.eval()

PROMPT = '''You are a helpful AI assistant. Please answer the user's questions kindly. 당신은 유λŠ₯ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈ μž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆλ¬Έμ— λŒ€ν•΄ μΉœμ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.'''
instruction = "μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄μ€„λž˜?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
# 물둠이죠! μ„œμšΈμ€ λ‹€μ–‘ν•œ 문화와 역사, μžμ—°μ„ κ²ΈλΉ„ν•œ λ„μ‹œλ‘œ, λ§Žμ€ κ΄€κ΄‘ λͺ…μ†Œλ₯Ό μžλž‘ν•©λ‹ˆλ‹€. μ—¬κΈ° μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό μ†Œκ°œν•΄ λ“œλ¦΄κ²Œμš”.

### μ½”μŠ€ 1: 역사와 λ¬Έν™” 탐방

1. **경볡ꢁ**
   - μ„œμšΈμ˜ λŒ€ν‘œμ μΈ ꢁꢐ둜, μ‘°μ„  μ™•μ‘°μ˜ 역사와 λ¬Έν™”λ₯Ό μ²΄ν—˜ν•  수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

2. **뢁촌 ν•œμ˜₯λ§ˆμ„**
   - 전톡 ν•œμ˜₯이 잘 보쑴된 λ§ˆμ„λ‘œ, μ‘°μ„ μ‹œλŒ€μ˜ μƒν™œμƒμ„ λŠλ‚„ 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **인사동**
   - 전톡 문화와 ν˜„λŒ€ 예술이 κ³΅μ‘΄ν•˜λŠ” 거리둜, λ‹€μ–‘ν•œ κ°€λŸ¬λ¦¬μ™€ 전톡 μŒμ‹μ μ΄ μžˆμŠ΅λ‹ˆλ‹€.

4. **μ²­κ³„μ²œ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ 천문으둜, μ‘°κΉ…κ³Ό 산책을 즐길 수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

### μ½”μŠ€ 2: μžμ—°κ³Ό μ‡Όν•‘

1. **남산 μ„œμšΈνƒ€μ›Œ**
   - μ„œμšΈμ˜ 전경을 ν•œλˆˆμ— λ³Ό 수 μžˆλŠ” 곳으둜, 특히 저녁 μ‹œκ°„λŒ€μ— 일λͺ°μ„ κ°μƒν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.

2. **λͺ…동**
   - μ‡Όν•‘κ³Ό μŒμ‹μ μ΄ μ¦λΉ„ν•œ μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λΈŒλžœλ“œμ™€ 전톡 μŒμ‹μ„ 맛볼 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **ν•œκ°•κ³΅μ›**
   - μ„œμšΈμ˜ μ£Όμš” 곡원 쀑 ν•˜λ‚˜λ‘œ, μ‘°κΉ…, μžμ „κ±° 타기, λ°°λ‚­ 여행을 즐길 수 μžˆμŠ΅λ‹ˆλ‹€.

4. **ν™λŒ€**
   - μ Šμ€μ΄λ“€μ΄ 즐겨 μ°ΎλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ 카페, λ ˆμŠ€ν† λž‘, 클럽이 μžˆμŠ΅λ‹ˆλ‹€.

### μ½”μŠ€ 3: ν˜„λŒ€μ™€ μ „ν†΅μ˜ μ‘°ν™”

1. **λ™λŒ€λ¬Έ λ””μžμΈ ν”ŒλΌμž (DDP)**
   - ν˜„λŒ€μ μΈ κ±΄μΆ•λ¬Όλ‘œ, λ‹€μ–‘ν•œ μ „μ‹œμ™€ μ΄λ²€νŠΈκ°€ μ—΄λ¦¬λŠ” κ³³μž…λ‹ˆλ‹€.

2. **μ΄νƒœμ›**
   - λ‹€μ–‘ν•œ ꡭ제 μŒμ‹κ³Ό μΉ΄νŽ˜κ°€ μžˆλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λ¬Έν™”λ₯Ό κ²½ν—˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

3. **κ΄‘ν™”λ¬Έ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ κ΄‘μž₯으둜, λ‹€μ–‘ν•œ 곡연과 행사가 μ—΄λ¦½λ‹ˆλ‹€.

4. **μ„œμšΈλžœλ“œ**
   - μ„œμšΈ 외곽에 μœ„μΉ˜ν•œ ν…Œλ§ˆνŒŒν¬λ‘œ, κ°€μ‘±λ‹¨μœ„ κ΄€κ΄‘κ°λ“€μ—κ²Œ 인기 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

이 μ½”μŠ€λ“€μ€ μ„œμšΈμ˜ λ‹€μ–‘ν•œ λ©΄λͺ¨λ₯Ό κ²½ν—˜ν•  수 μžˆλ„λ‘ κ΅¬μ„±λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. 각 μ½”μŠ€λ§ˆλ‹€ μ‹œκ°„μ„ μ‘°μ ˆν•˜κ³ , 개인의 관심사에 맞게 μ„ νƒν•˜μ—¬ λ°©λ¬Έν•˜λ©΄ 쒋을 것 κ°™μŠ΅λ‹ˆλ‹€. 즐거운 μ—¬ν–‰ λ˜μ„Έμš”!

Citation

Language Model

@misc{bllossom,
  author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
  title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
  year = {2024},
  journal = {LREC-COLING 2024},
  paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
 },
}

Vision-Language Model

@misc{bllossom-V,
  author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
  title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
  year = {2024},
  publisher = {GitHub},
  journal = {NAACL 2024 findings},
  paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
 },
}

Contact

Contributor

Downloads last month
31
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kyle55/Base

Finetuned
(389)
this model