VQ-GAN model trained on the Kimetsu no Yaiba dataset on Tensorflow.
The parameters used for training are the following:
model:
vqvae_config:
beta: 0.25
num_embeddings: 50257
embedding_dim: 128
autoencoder_config:
z_channels: 512
channels: 32
channels_multiplier:
- 2
- 4
- 8
- 8
num_res_blocks: 1
attention_resolution:
- 16
resolution: 128
dropout: 0.0
discriminator_config:
num_layers: 3
filters: 64
loss_config:
discriminator:
loss: "hinge"
factor: 1.0
iter_start: 50000000
weight: 0.8
vqvae:
codebook_weight: 1.0
perceptual_weight: 4.0
perceptual_loss: "vgg19" # "vgg16", "vgg19", "style"
trainer:
batch_size: 64
n_epochs: 10000
gen_lr: 3e-5
disc_lr: 5e-5
gen_beta_1: 0.5
gen_beta_2: 0.9
disc_beta_1: 0.5
disc_beta_2: 0.9
gen_clip_norm: 1.0
disc_clip_norm: 1.0
Implementation and documentation can be found here
- Downloads last month
- 0