CS221-bert-base-uncased-finetuned-semeval-NT-tir

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4896
  • F1: 0.5211
  • Roc Auc: 0.7290
  • Accuracy: 0.5611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.339 1.0 369 0.2944 0.2091 0.5579 0.5190
0.2326 2.0 738 0.2562 0.4035 0.6321 0.5829
0.17 3.0 1107 0.2748 0.4852 0.6821 0.6005
0.1252 4.0 1476 0.3174 0.4954 0.7209 0.5285
0.0954 5.0 1845 0.3520 0.4669 0.6766 0.5774
0.0337 6.0 2214 0.3920 0.5091 0.7215 0.5516
0.0105 7.0 2583 0.4154 0.5054 0.7026 0.5883
0.0431 8.0 2952 0.4430 0.4925 0.7084 0.5516
0.0063 9.0 3321 0.4653 0.5164 0.7194 0.5870
0.0034 10.0 3690 0.4786 0.4960 0.7012 0.5761
0.0054 11.0 4059 0.4896 0.5211 0.7290 0.5611
0.0029 12.0 4428 0.5173 0.4954 0.7026 0.5734
0.0024 13.0 4797 0.5175 0.5058 0.7094 0.5720
0.0017 14.0 5166 0.5217 0.5026 0.7065 0.5734

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
106
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kuongan/CS221-bert-base-uncased-finetuned-semeval-NT-tir

Finetuned
(2410)
this model