final_merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the task arithmetic merge method using /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861 as a base.
Models Merged
The following models were included in the merge:
- /content/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805
- /content/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843
- /content/evol_merge_storage/input_models/zephyr-7b-beta_2449712360
Configuration
The following YAML configuration was used to produce this model:
base_model: /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861
dtype: bfloat16
merge_method: task_arithmetic
parameters:
int8_mask: 1.0
normalize: 0.0
slices:
- sources:
- layer_range: [0, 8]
model: /content/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805
parameters:
weight: 0.2651169354077403
- layer_range: [0, 8]
model: /content/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843
parameters:
weight: 0.18639264857576499
- layer_range: [0, 8]
model: /content/evol_merge_storage/input_models/zephyr-7b-beta_2449712360
parameters:
weight: 0.5571623232659009
- layer_range: [0, 8]
model: /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861
- sources:
- layer_range: [8, 16]
model: /content/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805
parameters:
weight: 0.479084912778366
- layer_range: [8, 16]
model: /content/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843
parameters:
weight: 0.0534837994064743
- layer_range: [8, 16]
model: /content/evol_merge_storage/input_models/zephyr-7b-beta_2449712360
parameters:
weight: 0.36648659017136165
- layer_range: [8, 16]
model: /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861
- sources:
- layer_range: [16, 24]
model: /content/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805
parameters:
weight: 0.2708173123890842
- layer_range: [16, 24]
model: /content/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843
parameters:
weight: 0.5197456532761666
- layer_range: [16, 24]
model: /content/evol_merge_storage/input_models/zephyr-7b-beta_2449712360
parameters:
weight: 0.6916256324702645
- layer_range: [16, 24]
model: /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861
- sources:
- layer_range: [24, 32]
model: /content/evol_merge_storage/input_models/Hermes-2-Pro-Mistral-7B_2793206805
parameters:
weight: 0.05758774696826352
- layer_range: [24, 32]
model: /content/evol_merge_storage/input_models/Dans-AdventurousWinds-Mk2-7b_1152917843
parameters:
weight: 0.016220392031141062
- layer_range: [24, 32]
model: /content/evol_merge_storage/input_models/zephyr-7b-beta_2449712360
parameters:
weight: 0.29024049643217215
- layer_range: [24, 32]
model: /content/evol_merge_storage/input_models/Mistral-7B-v0.1_8133861
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Knobi3/evomergeproto1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.